Title of	the Course: ENGINEERING MATHEMATICS-III	L	Т	Р	Credits							
Course	e Code: UETC0301	03	01		04							
Course	Course Pre-Requisite: Basic terminologies of differential equations, vector											
algebra, concepts of probability, rules and formulae of derivative												
and integration.												
Course Description: This Course contains linear differential equations, vector calculus,												
Laplace transforms, probability distributions, Fourier series,												
~	Fourier Transforms.											
Course	e Objectives:	•1•			11							
1.	To develop abstract, logical and critical thinking and the at their work	oility i	to ref.	lect cr	itically upon							
2	To study various mathematical tools like differential equation	ions i	integr	al tran	sforms vector	r						
۷.	calculus probability to devise engineering solutions for pro-	blem	integr is aris	ing in	engineering							
3.	The student must be able to formulate a mathematical mod	el of a	a real	life ar	d engineering.	,						
•	problem, solve and interpret the solution in real world.											
Course	e Outcomes:											
COs	After the completion of the course the student will be	B	Bloom	's Cog	gnitive							
	able to	le	evel	Desc	riptor							
CO1	Solve linear differential equations with constants	I	II	Appl	ying							
	coefficients and apply them to realistic problems.											
CO2	Apply knowledge of vector differentiation to find	I	II	Appl	ying							
	directional derivatives, curl and divergence of vector field	s.										
CO3	Find Laplace transforms of given functions and use it to	I	II	Appl	ying							
	solve LDEs.											
CO4	Make use of appropriate probability distribution for finding	g I	II	Appl	ying							
	probabilities of events.											
CO5	Develop Fourier series expansion of a function over the	Г	V	Anal	yzing							
~ -	given interval.											
CO6	Determine Fourier transforms of given function using its	Γ	V	Analy	yzing							
	definition and properties.											

CO-PO Mapping:

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	-	-	-	-	-	1	-	-	-	-
CO2	3	2	-	-	-	-	-	1	-	-	-	-
CO3	3	2	-	-	-	-	-	1	-	-	-	-
CO4	3	2	-	-	-	-	-	1	-	-	-	-
CO5	3	2	-	-	-	-	-	1	-	-	-	-
CO6	3	2	-	-	-	-	-	1	-	-	-	-

•	4		
Assessmen			
Teacher A	ssessment:	One Mid Semester Exeminatio	n (MSE) and
Two comp	master Examination (ESE) having 200/	200/ and 500/ weights respect	fively
	nt	, 50% and 50% weights respect	lively.
Assessme		uks	
ISE I	10		
MSE ISE 2	30		
ISE 2	10		
ESE			·
ISE I and	ISE 2 are based on assignment/declared f	test/quiz/seminar/Group Discus	ssions etc.
MSE: Asso	essment is based on 50% of course conte	nt (Normally first three units)	
ESE: Asse	ssment is based on 100% course content	with60-70% weightage for con	urse content
(normally	ast three units) covered after MSE.		
Course Co	ontents:		0.77
Unit 1: Li	near Differential Equations with Cons	tant Coefficients and Its	8 Hrs.
A	plications		
1.1	Definition, general form, complete solu	ution	
1.2	Rules for finding complementary funct	tion	
1.3	Short methods for finding particular in	tegral	
1.4	General rule for finding particular integ	gral	
1.5	Applications to electrical circuits		
Unit 2: Ve	ctor Calculus		7 Hrs.
2.1	Differentiation of vectors		
2.2	Velocity and acceleration		
2.3	Gradient of scalar point function and d	irectional derivative	
2.4	Divergence of vector point function		
2.5	Curl of a vector point function		
2.6	Solenoidal and Irrotational vector field	S	
Unit 3: La	place Transforms		8 Hrs.
3.1	Definition, transforms of elementary fu	unctions, properties of	
	Laplace transform		
3.2	Transforms of derivative and integral		
3.3	Inverse Laplace transforms		
3.4	Inverse Laplace transforms by using p	artial fractions and	
	convolution theorem.		
3.5	Transforms of periodic functions and	Heaviside unit step function.	
3.6	Solution of linear differential equation	ns with constant coefficients	
	by Laplace transform method.		
	5 1		
Unit 4: Pr	obability Distributions		6 Hrs.
4.1	Random variable		0 110
4.2	Probability mass function and probabil	lity density function	
4.3	Binomial distribution	· · · · · · · · · · · · · · · · · · ·	
4.4	Poisson distribution		
4.5	Normal distribution		

Unit 5: Fo	urier Series	7 Hrs.						
5.1	Definition, Euler's formulae,							
5.2	Dirichlet's conditions, functions having points of discontinuity.							
5.3	Change of interval							
5.4	Expansion of odd and even periodic functions							
5.5	Half range series							
Unit 6: Fo	urier Transform	6 Hrs.						
6.1	Fourier integral theorem							
6.2	Fourier transforms							
6.3	Fourier sine and cosine transforms							
6.4	Finite Fourier sine and cosine transforms							
6.5	Properties of Fourier transforms							
6.6	Convolution theorem for Fourier transform							
6.7	Parseval's identity for Fourier transform							
Recomme	nded Books:							
1. Higher I	Engineering Mathematics by Dr. B. S. Grewal, Khanna Publishers, Delh	ni.						
2. A Text l	Book of Applied Mathematics, Vol. I, Vol. II and vol. III by P. N. Wart	tikar						
& J. N.	Wartikar, Pune Vidyarthi Griha Prakashan, Pune.							
Reference	Books:							
1. Advance	1. Advanced Engineering Mathematics by Erwin Kreyszig, Wiley India Pvt. Ltd.							
2. Advance	2. Advanced Engineering Mathematics by H. K. Dass, S. Chand, New Delhi.							
3. A text b	3. A text book of Engineering Mathematics by N. P. Bali, Iyengar, Laxmi Publications (P)							
Ltd., No	ew Delhi.							

4. Mathematics for Engineers Vol-I & Vol-II by Rakesh Dube, Narosa Publishing House.

Unit wise Measurable Learning Outcomes:

Unit 1: Linear Differential Equations with Constant Coefficients and Its Applications

Students will be able to

- a) Solve linear differential equations with constant coefficients.
- b) Solve the problems on electrical circuits.

Unit 2: Vector Calculus

Students will be able to

- a) Differentiate vector quantity.
- b) Find the directional derivative of scalar point function.
- c) Find the divergence and curl of vector point function.
- d) Determine solenoidal and irrotational fields with the help of divergence and curl respectively.

Unit 3: Laplace Transforms

Students will be able to

- a) Find Laplace transform by using definition
- b) Recall properties of Laplace transform and use to find transforms of given functions.
- c) Use Laplace transform method to solve linear differential equations.

Unit 4: Probability Distributions

Students will be able to

- a) Verify the function as probability mass and density function.
- b) Use probability distributions in solving physical and engineering problems.

Unit 5 : Fourier Series

Students will be able to

- a) Define Fourier series, Euler's formulae.
- b) Develop Fourier series in an interval.
- c) Expand function as the half range sine or half range cosine series.

Unit 6: Fourier Transforms

Students will be able to

- a) Find Fourier transforms of various functions
- b) Find Fourier sine and cosine transforms of given functions

Title of	the Co	urse: A	nalog C	ircuits	- I]	L	Т	Р		Credit
Course	Course Code: UETC0302 03 - 03											03	
Course Pre-Requisite: 12 th Physics													
Course Description: This course has been designed to introduce students with construction,													
theory and characteristics of various electronics devices. Also this course will lay strong													
fundamental base of discrete electronics and to develop capacity to analyze, interpret and													
design different electronics circuits.													
Course Objectives:													
1.	1. To explain the differences between the various types of diode												
2.	To expl	ain the	operatio	n of trai	nsistor a	nd its di	ifferent	configur	atio	ns			
3.	To expl	ain the	working	g of elec	tronic c	ircuits 1	ike diod	les and a	ampl	lifiers	usi	ng E	BJT and
	MOSFE	Ts.				1.0	c			c 1			
4. -	To expl	ain the	small sig	gnal mo	dels use	d tor pe	rtorman	ce analy	'S1S (ot eleo	ctro	nic c	ircuits.
5.	10 illu	strate	the me	ethods	of desi	gning	the ele	ctronic	circ	cuits	usır	ng (liscrete
C	compon	ents.											
Course	Learni	ng Out	comes:	- f 41				111.	1		C		•
CO	Alter t	ne com	pletion	of the c	ourse ti	ie stude	ent snou	lia de	Bloom s Co			Deserinter	
<u>CO1</u>	able to		1 41		6 1 . 1	1			Level Descripto			scriptor	
COI	10 und	ierstand	the wo	orking of	i diode a	and tran	sistors		Cognitive Under-			ler-	
002	A 1				4 : -		- <i>(</i> V - 14 -						
CO2	Analyz	e the pe	eriormai	nce of el	ectronic models	c circuits	s (Voltag	ge		ogniti	ve	Ana	alyzing
	ampini	tor mod	ng sinai Ial	i signai i	models	such as	iiybiid-						
CO3	Fyohue	to the n	erforme	noo of a	liodos a	nd Volte	a amp	lifior	C	aniti	vo	Evo	Justing
C03	Dogian	the electron		ince of c	rootifio	ilu volta	age amp	IIIIers.	Cognitive			Creating	
04	amplifi	ars) for	given s		tions usi	is, inters	s allu		C	Jgiinti	ve	Cle	ating
	compo	nents su	ch as di	odes R	IT FET	and M	NEET						
CO5		an annr	onriate r	ectifier	filter ar	d ampli	ifier for	given	Pe	veho	_	Δnt	alving
005	annlica	tion	Spriate I	cetifici,	mer a	ia ampi		given	m	otor	_	лp	Jiying
	appnea								III	5101			
CO-PC) Manni	ing:											
CO	1	2	3	4	5	6	7	8	9	10	1	1	12
C01	3	-	-	-	-	-	-	-	-	-	-	-	
CO2	3	-	-	-	-	-	-	-	-	-	3		
CO3	-	-	3	2	-	-	-	-	-	-	-		-
CO4	-	-	3	2	-	-	-	-	-	-	-		-
CO5	-	-	-	-	-	2	-	_	-	-	-		-
	· · · ·	1	1	I	1		I	1		1			

Assessments : Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks							
ISE 1	10							
MSE	30							
ISE 2	10							
ESE	50							
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussions etc.							
MSE: Assessment is based on 50% of course content (Normally first three modules)								

ESE: Assessment is based on 100% course content with60-70% weightage for course content

(normally last three modules) covered after MSE.							
Course Contents:							
Unit 1: Semiconductor Diode	08 Hrs.						
PN Junction Diode: VI characteristics, current components, drift and diffusion							
current, Diode current equation, temperature dependence of VI characteristics,							
diode equivalent circuits, diode resistance and capacitance, various breakdown							
mechanisms							
Introduction to Special Semiconductor Diodes: Zener diode, PIN diode, Photo							
diode, LED - construction, characteristics, symbol, equivalent circuits.							
(Numericals are expected).							
Unit 2: Unregulated Power Supplies	08 Hrs.						
Rectifiers: Half, Full and Bridge Rectifier, Analysis for different parameters: PIV,							
TUF, efficiency, ripple factor, regulation, etc.							
Filters: Need of filters, Types: Capacitor, Inductor, LC, CLC, Analysis for ripple							
factor and regulation. Design of unregulated power supply with and Without filter.							
Unit 3: Voltage Regulators	08 Hrs.						
Need of voltage regulator, Stabilization factors Analysis & Design of Shunt							
regulator (using Zener diode & BJT), series voltage regulator (using BJT) Series							
voltage regulator with Pre- regulator & Overload protection circuit.							
Unit 4: Transistors	08 Hrs.						
a. Bipolar Junction Transistor: Construction, Operation. Common Base							
Configuration, Transistor Amplifying Action, Common Emitter Configuration,							
Common Collector Configuration, Limit of Operation, Transistor Data Sheet,							
Power Dissipation, Heat Sinking.							
b. Field Effect Transistor: <i>n</i> -Channel JFET, Characteristics of <i>n</i> – Channel JFET,							
p – Channel JFET, JFET Data Sheet and Parameters, FET Voltage Amplification,							
JFET Construction, FET Equivalent Circuit, MOSFET.							
Unit 5: Transistor Biasing	08 Hrs.						
BJT : DC Load Line and Bias Point, Fixed Current Bias, Collector-to-Base Bias,							
Emitter Current Bias, Thermal Stability, AC Biasing, AC Load Line, Biasing							
Transistor Switching Circuits.							
FET: DC Load Line and Bias Point, Fixed Voltage Bias Circuit, Self-Bias Circuit,							
Potential Divider Bias, Biasing MOSFETs, Biasing FET Switching Circuits.							
Unit 6: BJT and MOSFET Amplifiers	08 Hrs.						
BJT: H-Parameters, Hybrid model for transistor and their approximate model (CE,							
CB& CC configuration). Analysis of CE, CC (emitter follower) amplifier. Design							
of CE amplifier MOSFET: Small-Signal Equivalent Model. Analysis of Common							
Source (CS) and Common Drain (Source Follower) amplifier. Design of Common							
Source (CS).							
Textbooks:							
1. Electronic Devices and Circuits, R. Boylestad & L. Nashelsky, Prentice Hall In	ternational,						
8 th Edition, 2005.	,						
2. Allen Mottershed —'Electronic devices & circuits'-Prentice- Hall India	4						
3. N.C. Goyal & R.K. Khetan-' A Monograph on Electronics Design Principles'-V th Edition-							

Khanna Publishers

References:

1. David A. Bell — 'Electronic devices & circuits'- IVth Edition- Prentice- Hall India

2. Millman & C.Halkias -'Electronic devices & circuits'-IInd Edition- Tata McGraw Hill Publication

Unit wise Measurable students Learning Outcomes:

- 1. Compare and Contrast between the various types of diode
- 2. To **understand** the working of transistors and its configurations
- 3. **Apply** the small signal models (tools) to **analyze** the performance of voltage amplifiers built using BJT.
- 4. Analyze the performance of rectifiers, BJT & FET amplifiers.
- 5. Analyze and Design BJT & MOSFET amplifiers.

Title of the Course: Digital System	L	Т	Р	Credit			
Course Code:UETC0303	03			03			
Course Pre-Requisite: Basic knowledge of numbering system and logic gates.							
Course Description:							
It is a core and fundamental subject. The course focuses on basic skill	s in m	ethoo	lofo	lesign			
and analysis of digital system like counters, registers, FSM etc.							
Course Objectives: The course aims to:							
1.Explain Boolean algebra and the various methods of Boolean function reduction, Kmap							

reduction and Quine McCluskey method.

2. Understand principles, characteristics and operations of combinational & sequential logic circuits.

3. Design, implement and analyze asynchronous and synchronous sequential circuits(FSM) using flip flops.

4. Explain the various 74XX series components and their applications in designing combinational & low complexity sequential circuits.

CO	After the completion of the course the student	Bloom's Cognitive			
	should be able to	level	Descriptor		
CO1	Apply Boolean laws/K-Map-method to reduce a	Application	Apply		
	given Boolean function.				
CO2	Design & realize combinational logic circuits	Synthesis	Design		
	using logic gates, MSI circuits,				
CO3	Demonstrate the operation of flip-flops, counters	Comprehension	Demonstrate		
	and shift registers.				
CO4	Design Synchronous sequential machine using	Create	Design		
	Moore and Mealy machine				

CO-PO Mapping:

0010		B-										
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	3	3	3	2						
CO2	3	1	3	3	3	2						
CO3	2	2	3	2	3	2						
CO4	2	2	3	3	3	2						

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks							
ISE 1	10							
MSE	30							
ISE 2	10							
ESE	50							
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.								

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content

(normally last three modules) covered after MSE.						
Unit 1:Logic Simplification and Combinational Logic Design SOP, POS, Simplification of Switching function & representation (Maxterm &Minterm), Boolean expression & representation using logic gates, Propagation delay in logic gate. Boolean optimization, K-map optimization, Boolean optimization, K-map optimization.	6 Hrs.					
Adder, Subtractor, code converters (binary to gray & gray to binary, BCD to Excess 3 and vice versa, BCD to 7 segment display)(IC 7447, 7448), Multiplexer and Demultiplexer, encoder, priority encoder, decoder, adder with look ahead carry generator, Parallel adder (IC 7483), Subtractor using adder, 4 bit Magnitude Comparator (7485)	6 Hrs.					
Unit 3:Sequential Logic Circuits 1 Bit Memory Cell Flip-flop & Timing Circuits: SR latch, Gated latch, Edge triggered flip-plop:- D, JK, T Flip-flop, flip flop asynchronous inputs ,characteristic table of Flip-flop, excitation table of Flip-flop, , master slave JK flip flop, inter conversion of Flip-flop. Study of timing parameters of flip-flop: clock to Q, setup time, hold time, timing parameters of flip flop asynchronous input.	6 Hrs.					
Unit 4: : Applications of Sequential circuits Shit resistor: buffer register, controlled buffer register. Data transmission in shift resistor SISO, SIPO, PISO, PIPO, Bidirectional shift resistor universal shift resistor. Counter: Classification, Ripple or asynchronous counter, Effect of propagation delay in ripple counters, up-down counter, Mod-n counter, synchronous counter, Ring counter, Johnson counter.	8 Hrs.					
Unit 5: Synchronous Sequence Machines FSM, Moore/Mealy machines, representation techniques, state diagram, state table, state assignment and state reduction, implementation using D flip flop.	4 Hrs.					
Unit 6:Logic Families and Semiconductor Memories: Characteristic of Digital ICs, Transistor – Transistor Logic, Complementary MOS (CMOS) Logic, Comparison of TTL and CMOS families. Memory Devices: ROM, PROM, EPROM, EEPROM, RAM, SRAM, DRAM. TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan- out, Tristate TTL, ECL, CMOS families and their interfacing.	6 Hrs.					
Textbooks: 1. Anand Kumar 'Fundamentals of Digital Circuits' PHI 2. M. Morris Mano 'Digital Design' (Third Edition),. PHI						
2. W. Morris Maio Digital Design (Third Edition),. PHI References: 1] Willim I. Fletcher.'An Engineering Approach to Digital Design'—PHI/ Pearson 2] NormanBalabanianBradle Carlson. 'Digital Logic Design Principals,.' Wiley Publication 3] Rajkamal 'Digital Systems Principals and Design'—Pearson 4] A.P. Malvino, D.P. Leach 'Digital Principles & Applications' -VIth Edition-Tata McGra Hill, Publication.5] R.P. Jain-'Modern Digital Electronics' IIIrd Edition- Tata McGraw Hi Publication						
 Unit wise Measurable students Learning Outcomes: Upon successful completion of this course students will be able to: 1. Explain various Boolean laws and it's reduction technique. 2. Understand principles, characteristics and operations of combinational logic circu 3. Understand principles, characteristics and operations of sequential logic circuits. 4.Design applications of sequential logic circuits 5. Analyze Finite state machines. 6. Explain logic families and memories. 	its.					

Title of the Course: Network Analysis	L	Т	Р	Credit
Course Code: UETC0304	03	01	-	04

Course Pre-Requisite:

Basic Electrical Engineering.(KCL,KVL,Voltage division rule, Current division rule, Ohm's Law, Series and parallel combination of R,L and C components).

Engineering Mathematics-I, II, III.(Partial fraction expansion, matrices, determinants calculus and differential equations).

Course Description: Course deals with different types of Circuit Theorems apply to AC and DC network & Graph theory. Also we discuss two port network and their interconnection. Also we study Resonance, different filters and Transient response of various AC and DC network.

Course Objectives:

1. To introduce the basic terminologies related to the electrical parameters and sources and adopt the network solving techniques and graph theory.

2. To Study different theorems and understand the need and necessity of different theorems.

- 3. To study and classify 2-port network parameters and to understand concept of frequency domain, pole-zero and network stability issues.
- 4. To analyze different resonance circuits.
- 5. To design different types of Filters.

6. To design and analyze transient response of R-L-C circuit by using integro-differential equations and/or Laplace transform approach

Course Learning Outcomes:

CO	After the completion of the course	Bloom's Taxonomy			
	the student should be able to	level	Descriptor		
CO1	Explain the graph theory and solve	Cognitive(Comprehension)	Explain		
	problems related to different theorems				
	used for network analysis.				
CO2	Demonstrate two port networks and its	Cognitive(Comprehension)	Demonstrate		
	parameters.				
CO3	Explain series and parallel resonance	Cognitive(Comprehension)	Explain		
	and its effects.				
CO4	Identify and study type of transient	Psychomotor(Analysis)	Identify		
	system.				
CO5	Classify different filter approximations.	Cognitive(Synthesis)	Classify		

CO-PO Mapping:

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	-	1	3	-	-	-	-	1	
CO2	2	3	3	-	3	3	-	-	-	-	3	
CO3	2	3	3	-	3	3	-	-	-	-	3	
CO4	-	3	3	-	3	3	-	-	-	-	3	
CO5	-	3	3	-	3	3	-	-	-	-	3	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE)and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.AssessmentMarks

ISE 1	10							
MSE	30							
ISE 2	10							
ESE	ESE 50							
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussion	ons etc.						
MSE: Assessment is based on 50% of course c	ontent (Normally first three modules)							
ESE: Assessment is based on 100% course content with60-70% weightage for course cont								
(normally last three modules) covered after MS	SE.							
Course Contents:								
Unit 1: Development of Basic Circuit Cor	cepts And Graph Theory:							
Conventions for describing networks, network Equations, Kirchhoff 's Law,								
source transformations, Lumped Circuit elem	nents, Ideal Sources (Dependent &	06Hrs.						
Independent), Linear Passive elements	relationship of Circuit elements-							
Definitions: Node, Loop, Path & Branch,	source transformation, star-delta							
transformation, loop analysis, node analys	is, Super mesh and super node							
analysis.(Examples – Kirchhoff's Laws a	and Application, formulations of							
networks, loop analysis, node analysis (Both A	C & DC).							
Graph Theory: Graph of a network, Trees, ch	ords and branches, Incidence							
matrix, loop matrix, lie-set and cutest of a graj	ph, examples based on above							
concepts.								
Let 4.2. Notering The second (Deth. DC) 9								
Unit 2: Network Theorems: (Both DC & A	AC Circuit Analysis) :							
Superposition Theorem, Millman's Theorem, M	Norton's Theorem, Thevenin's	08 Ura						
Theorem, Maximum Power Transfer Theorem,	Duality theorem, Millers theorem.	00 HIS.						
Unit 3: Two Port Network & Network Fu	nctions:							
Two port Network:	1. 1. 1							
Relationship of Two-port variables, short-circ	uit admittance parameters, the open	$06 \mathrm{Hrs}$						
circuit impedance parameters, transmission]	and series connections of two pert	00 1115.						
network	and series connections of two-port							
Network Function:								
Transfer functions of two port network Poles	and Zeros of network function time							
domain response from pole zero plot, amplitud	e and phase response from pole zero							
plot.	e una phase response nom pole zero							
Unit 4: Resonance:								
Introduction to AC circuit, steady state analysis	s of RL, RC and RLC circuits,							
Impedance, phase diagrams, power and power	factor, Series resonance: Bandwidth	06Hrs.						
Factor. Parallel resonance: Bandwidth. O Factor	or. Tank circuit.							
Unit 5: Filters	,							
Introduction, Classification, filter fundamental	such as attenuation constant (O).							
phase shift (N) propagation constant (S) charac	teristic impedance (Zo). Design of	06Hrs.						
Low pass, High pass, Band pass & Band reject	filter, Design & analysis of							
constant K, M derived & composite filters (low	pass, high pass, band pass & band							
stop filters).								
Unit 6: Transient Response:								
Network Solution using Laplace transforms, In	itial Conditions of elements.							
Steady state & transient response (Voltage)		04Hrs.						
DC response of RL circuit								
= =Poince of fill enteent								

DC response of RC circuit

DC response of RLC circuit

Sinusoidal response of RL, RC & RLC circuit

Textbooks:

- 1) A. Sudhakar ,Shyammohan S.Palli 'Circuit & Network Analysis & Synthesis' IIIrd Edition – Tata McGraw Hill Publication (Unit II,IV,VI)
- 2) A.Chakrabarti 'Circuit Theory (Analysis & Synthesis)' IIIrd Edition (Unit I,II) Dhanpat Rai & co
- 3) D. Roy Choudhury 'Networks & Systems' New Age International Publisher (Unit I,II,III)
- 4) Soni Gupta 'Electrical Circuit Analysis' Dhanpat Rai & Co. (Unit III, IV, V, VI)
- 5) Boylestad 'Introductory Circuit Analysis Universal book stall, New Delhi.(Unit I,II)

Reference Books:

- 1) William H Hayt, Jack E Kimmerly and Steven M.Durbin, Engineering Circuit Analysis, Tata McGraw Hill
- 2) M.E.Van Valkenburg ' Network Analysis' IIIrd Edition, Pearson Education / PHI
- 3) Josheph Edministrar 'Theory & Problems of Electronic Circuit (Schaum's series) Tata McGraw Hill, Publication
- 4) R.G. Kaduskar, S.O.Rajankar, T.S. Khatavkar, Network Fundamentals and Analysis Wiley India

Unit wise Measurable students Learning Outcomes:

After the completion of the course the student should be able to

- 1) Explain the graph theory and analyze the circuit using graph theory.
- 2) Solve problems related to different theorems used for network analysis.
- 2) Describe & demonstrate different types of AM Receivers.
- 3) Demonstrate two port networks and its parameters.
- 4) Explain series and parallel resonance and its effects.
- 5) Apply and implement filter approximations.
- 6) Identify and study the type of transient system.

Title of	the C	ourse:	Electr	onic In	strume	ntatio	n &		L	Τ	P	Credit
Measu	rement	ţ	Cours	se Code	e: UETO	20305			03	-	-	03
Course	Pre-R	equisit	te: Ba	sics of e	electron	ics						
Course	Descr	iption:										
The co	urse ai	ms to P	rovide	knowle	edge of	differe	nt part	ts of Meas	suremei	nt sys	stem,	
instrum	entatio	n syste	m & di	ifferent	types o	f transe	ducers					
	Objec	tives:										
1 IIIS CO	urse an	ms to oductic	nofd	fforont	tunas a	fTrong	duaar	e la conco	***			
$\begin{array}{c} 1. \text{ PIOV} \\ 2 \text{ Drov} \end{array}$	ide Intr	vladae	of dif	foront n	types of	1 I raiis Moosuu	raman	s & senso	rs			
$\frac{2.110}{3}$ Prov	3. Provide basic knowledge of measurement system											
4 Prov	4. Provide basic understanding of different Electronic instruments											
5. Provide knowledge of different types of bridges												
Course Learning Outcomes:												
CO	After	the co	mpleti	on of th	e cour	se the	studer	nt	Bloom	s	Descrip	otor
	shoul	d be at	ole to						level		1	
CO1	Select	approp	oriate t	ransduc	er as pe	er requi	iremer	nt	Cogniti	ve	Analys	is
CO2	Identi	fy suita	ble lin	ear & n	onlinea	r circu	its		Cogniti	ve	Knowle	edge
CO3	Illustrate analog signals parameters related to Cognitive Application											
	electronic measurement											
CO4	Expla	in the b	oasic fe	atures &	& block	diagra	nm of		Cogniti	ve	Compr	ehension
	oscillo	oscope										
00 D0												
CO-PC) Mapp	oing:										
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	3	3	1	-	-	-	-	-	-
CO2	3	3	3	2	2	2	_	_	-	_	_	_
CO3	3	1	3	2	1	1	-	_	-	_	-	
CO4	3	1	3	3	3	1			_			
A and and		1	5	5	5	1			_			_
Assess	nents :	semont	•									
	mnone	nts of I	n Sem	ester Fu	aluatio	n (ISF) One	Mid Sem	ester F	vami	nation ((MSF) and
one En	dSemes	ter Exa	minati	ion (ES)	E) havi	ng 20%	6. 30%	and 50%	weight	ts res	pective	lv.
Assess	sment			(M	larks				F	
ISE 1						10)					
MSE						30)					
ISE 2						10)					
ESE						50)					
ISE 1 a	nd ISE	2 are b	ased o	n assigr	nment/d	leclared	d test/o	quiz/semir	nar/Gro	up D	iscussio	ons etc.
MSE: A	Assessn	nent is	based of	on 50%	of cour	se con	tent (N	lormally f	first thro	ee mo	odules)	
ESE: A	ssessm	ent is b	based o	n 100%	course	conter	nt with	160-70% v	veighta	ge fo	or cours	e content
(norma	lly last	three n	nodules	s) cover	ed after	r MSE.	•					
Course	Conte	ents:									I	
Unit 1:	Tra	nsduce	ers & S	Sensors	:	C1	. .	c —				6 Hrs.

Definition, Various Types of Transducers, Classification of Transducers, Selection Factors and General Applications of Transducers, Detailed Study of

Transducers: (i) Motion, (ii) Flow, (iii) Pressure, (iv) Temperature, (v) Force,						
(vi) Sound Transducer, Hall Effect Transducers, Digital Transducers, Proximity						
Devices, optical Sensors, Piezo – electric sensors						
Unit 2: Introduction to Measurement:	5 Hrs.					
Introduction of measurement system, Performance Characteristics, Static						
Characteristics, Error in Measurement, Types of Static Error, Sources of Error,						
Dynamic Characteristics, Statistical Analysis, Electrical Standards						
Unit 3: Signal Conditioning & Data Acquisition System:	6 Hrs.					
Introduction, analog DAS, digital DAS, multi channel DAS, data converters-						
ADC integrating type ADC, dual slope integrating type ADC, successive						
approximation type ADC, flash type ADC. DAC-multiplexer, sample and hold						
circuit						
Unit 4: Measuring Instruments:	7 Hrs					
Analog Instruments- Introduction, types of analog instruments, PMMC, MI, solid						
state electronic instruments, ohmmeter. Digital voltmeters- Introduction, Types of						
DVM, general specifications of DVM, digital multimeter, digital measurements						
of time, digital frequency meter, Q meter,						
Unit 5: Oscilloscope:	7 Hrs.					
CRO: Dual Beam, Dual Trace, Digital storage, Measurement of phase and						
frequency using Lissajous pattern, CRO probes: active, passive, current,						
attenuators, LED, LCD, Graphics Display						
Function generator & analyzer:						
Sine wave generator, square wave and pulse generator, function generator, wave						
analyzer, harmonic distortion analyzer, spectrum analyzer, logic analyzer						
Unit 6: Bridges:	5Hrs					
DC Bridges- Introduction, Wheatstone bridge, Kelvin's bridge. AC Bridges-						
Introduction, measurement of inductance-Maxwell's bridge, Hay's bridge,						
Andersons bridge, measurement of capacitance- Schering bridge, wein bridge						
Textbooks:						
1] A course in Electrical, Electronics measurement and Instrumentation, A.K. Sawh	nney					
2]Electronic Instrumentation, H. S. Kalsi, MGH, 3rd Edition						
References:						
1] Electronic Instrumentation and Measurement Techniques, Helfrick Cooper.						
2] Instrumentation for Engineers And Scientists, John Turner, II Edition, Wiley						
3] Electronic Instrumentation and Measurements, David A Bell, Third Edition, Oxf	ord					
4]Instrumentation for Engineering Measurements, James W Dally, II Edition, Wile	ey					
Unit wise Measurable students Learning Outcomes:						
Upon successful completion of this course students will be able to:						
1] Identify and classify error sources and explain how their effects can be minimize	d in					
Measurement						
2] Analyze different systems used in data acquisition						
3] Explain operating principle of measuring instruments like DVM, DMM.						
4] Apply knowledge of lissajous pattern to determine frequency of a signal						
5] Understand principle of operation of transducers & Apply knowledge of transducers	cer and					
sensor for various applications 6] Design bridge circuits						

Audit Course-I

Shivaji University, Kolhapur Second year undergraduate compulsory course in ENVIRONMENTAL STUDIES Course Code : UETC0361 Lecture :02 Syllabus

1. Nature of Environmental Studies. (4 lectures)

Definition, scope and importance.

Multidisciplinary nature of environmental studies Need for public awareness.

2. Natural Resources and Associated Problems. (4 lectures)

a) Forest resources: Use and over-exploitation, deforestation, dams and their effects on forests and tribal people.

b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams benefits and problems.

c) Mineral resources: Usage and exploitation. Environmental effects of extracting and using mineral resources.

d) Food resources: World food problem, changes caused by agriculture effect of modern agriculture, fertilizer-pesticide problems.

e) Energy resources: Growing energy needs, renewable and nonrenewable energy resources, use of alternate energy sources.

Solar energy, Biomass energy, Nuclear energy.

f) Land resources: Solar energy, Biomass energy, Nuclear energy,

Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

Role of an individuals in conservation of natural resources.

3. Ecosystems (6 lectures)

Concept of an ecosystem.

Structure and function of an ecosystem.

Producers, consumers and decomposers.

Energy flow in the ecosystem.

Ecological succession.

Food chains, food webs and ecological pyramids.

Introduction, types, characteristics features, structure and function of the following ecosystem :-

a) Forest ecosystem, b) Grassland ecosystem, c) Desert ecosystem,

d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

4. Biodiversity and its conservation (6 lectures)

Introduction- Definition: genetic, species and ecosystem diversity. Bio-geographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values.

India as a mega- diversity nation.

Western Ghat as a biodiversity region.

Hot-spot of biodiversity.

Threats to biodiversity habitat loss, poaching of wildlife, man- wildlife conflicts.

Endangered and endemic species of India.

Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

5. Environmental Pollution (6 lectures)

Definition: Causes, effects and control measures of: Air pollution, Water pollution, soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards.

Solid waste Management: Causes, effects and control measures of urban and industrial wastes. Role of a individual in prevention of pollution.

6. Social Issues and the Environment (8 lectures)

Disaster management: floods, earthquake, cyclone, tsunami and landslides. Urban problems related to energy

Water conservation, rain water harvesting, watershed management

Resettlement and rehabilitation of people; its problems and concerns.

Environmental ethics: Issue and possible solutions.

Global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust.

Wasteland reclamation.

Consumerism and waste products.

7. Environmental Protection (8 lectures)

From Unsustainable to Sustainable development.

Environmental Protection Act.

Air (Prevention and Control of Pollution) Act.

Water (Prevention and control of Pollution) Act.

Wildlife Protection Act.

Forest Conservation Act.

Population Growth and Human Health, Human Rights.

8. Field Work (10 lectures)

Visit to a local area to document environmental assets-River/Forest/Grassland/Hill/Mountain.

or

Visit to a local polluted site - Urban / Rural / Industrial /Agricultural.

or

Study of common plants, insects, birds.

or

Study of simple ecosystems - ponds, river, hill slopes, etc. **References :**

 Agarwal, K.C.2001, Environmental Biology, Nidi Pub. Ltd., Bikaner.
 Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380013, India, Email:mapin@icenet.net (R)

Title of the Course: Object Oriented Programming	L	Τ	P	Credit				
Course Code:UETC0333	01			01				
Course Pre-Requisite: A working knowledge of C programming is sufficient.								

Course Description:

This course is an extension of courses exposing students to the many concepts of programming. The course is an expository of the object-oriented programming methodology with emphasis on software design and code reuse as its core objectives. As a practical course, the focus is to equip students with adequate high-level object-oriented programming techniques required for successful design, development, and deployment of today's complex software systems. Furthermore, the students are actually mentored to master how the C++ and Java technology can be used to develop modern software systems.

Course Objectives:

1. Understand fundamentals of programming such as variables, conditional and iterative execution, methods, etc.

2. Understand fundamentals of object-oriented programming in C++ including defining classes, invoking methods, using classes.

3. Be aware of the important topics and principles of software development.

4. Have the ability to write a computer program to solve specified problems.

5. Be able to use the C++ concepts and Java SDK environment to create, debug and run programs.

Course	e Learni	ng Out	comes:										
CO	After t	he com	pletion	of the c	ourse tl	he stude	ent	Bloon	n's Cog	gnitive			
	should	be						level		Des	scripto	or	
	able to												
CO1	Explain	n the bas	sics of o	bjective	oriente	d		Cogni	tive	Exp	Explain		
	program	nming c	concepts	5.									
CO2	Model	simple (OOPs us	sing clas	sses and	objects	•	Cogni	tive	App	oly		
CO3	Demonstrate use of polymorphism and Inheritance Cognitive Demon											rate	
CO4	Illustrate various operations related to file handling. Cognitive Apply												
CO-PC) Mappi	Mapping:											
CO	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	2	3	3	3	1	1	2	2	3	2	3	3	
CO2	3	3	2	2	2	3	1	1	2	1	3	2	
CO3	2	2	1	1	1	1	1	1	1	1	1	2	
CO4	3	2	2	2	3	2	1	1	1	1	2	1	
Course	e Conten	nts:											
Unit 1	: Introd	uction 1	to OOP	• Object	oriente	d progr	ammin	g [C++], appl	ication	s 2 I	Hrs.	
of OOI	P & C++	-, dynan	nic initi	alizatio	n of var	iables, s	torage	classes	. Func	tions in	n		
C++, f	unction	prototyp	be, call	& retur	n by re	ference,	inline	function	on, De	fault &	ž		
Consta	nt argum	ent.											

Unit 2:Classes and objects3 Hrs.Introduction, structures, classes, defining member function, making an outside3 Hrs.function inline, Nesting member function, private member function, Arrays withina class, memory allocation for objects, Array of objects, pointer to members.

Pointers to objects this Pointers.	
Unit 3: Constructors and Destructors	2 Hrs.
Constructors, parameterized and multiple, constructors with default arguments,	
Dynamic initialization of objects (new, delete) copy constructor, dynamic	
constructors and destructors.	
Unit 4: Polymorphism	2 Hrs.
Function overloading, Unary & binary operator overloading, manipulation of strings using operators. Friend function & friend class.	
Unit 5: Inheritance	3 Hrs.
Single, multiple, multilevel, Hybrid, Hierarchical inheritance, virtual base classes, Abstract classes. Templates, exception handling.	
Unit 6: File Handling	2 Hrs.
Classes for file stream operations, opening and closing of files, file modes, file pointer & their manipulations, sequential I/O operations.	
 Textbooks: 1. E Balgurusamy – 'Object oriented programming with C++' -, IIIrd Edition- Tata I Hill Publication 2. Rajesh K.Shukla-'Object – Oriented Programming in C++'WILEY, INDIA . 3. Herbert Schildt, "Complete reference Java 2", TMGH publication. 	Mc- Graw
References: 1. Schildt – 'The Complete Reference C++' - IIIrd Edition - Tata McGraw Hill Pub 2. D Ravichandran 'Programming with C++ '-IInd Edition- Tata McGraw Hill Pu 3. RohitKhurana-'Object oriented programming with C++'-second edition-Vikas p	lication blication ublication
 Unit wise Measurable students Learning Outcomes: 1. Explain the basics of objective oriented programming concepts. 2. Apply the features of object oriented programming such as objects, classes, user of data types, enumerations, constructors, destructors, overloading, inheritance polymetc. 3. Implement, test, and debug the programs in an object-oriented programming languages.(C++ and Java) 	lefined orphism

Title o	f the Co	ourse: A	Analog	Circuit	ts – I La	ab			L	Т	Р		Credit	
Course	e Code:	UETCO)331						-	-	02		01	
Course	e Pre-R	equisit	e: Basic	Electri	ical Eng	gineerin	g		l					
Course	e Descr	iption:	This c	course	has bee	en desig	gned to	intro	luce s	tudent	s with	co	nstructio	on,
theory	and cl	naracter	istics o	of vario	ous ele	ctronics	s devic	es. Al	so thi	s cou	rse wil	1	lay stroi	ng
fundan	nental ba	ase of c	liscrete	electro	nics and	d to dev	velop ca	apacity	to and	alyze,	interpre	et a	and desig	gn
differen	nt electr	onics ci	ircuits.				1			•	1			-
Course	e Objec	tives :												
1. To explain the working operation of diode and transistors														
2.	То ехр	lain the	e worki	ng of e	lectroni	c circu	its like	rectifie	ers, filt	ers an	d volta	ge	amplifie	rs
	using B	JT, FE	T and M	10SFE	Ts.									
3.	To illus	s trate t	he meth	ods of	designir	ng the e	lectroni	c circu	its usi	ng disc	crete co	mp	ponents.	
4.	4. To explain the practical ways of measuring AC and DC parameters of electronic circuits													
like rectifiers, filters, voltage regulators and voltage amplifiers for their performance														
analysis.														
Course	Course Learning Outcomes:													
CO	After	the con	npletio	n of the	e course	e the stu	udent sl	hould	Bloo	m's T	axonon	ıy		
	be abl	e to							Leve	el	De	Descriptor		
CO1	Demo	nstrate	the wo	rking o	felectro	onic cire	cuits		Cog	nitive	Un	de	erstanding	g
	(rectif	iers, filt	ers and	voltage	e amplif	fiers) bu	ilt usin	g						
	BJT, J	FET an	d MOS	FET.										
CO2	Test a	nd ana l	lyze the	perform	mance of	of rectif	iers, filt	ers	Cog	nitive	An	al	yzing	
	and vo	ltage a	mplifier	s built	using B	JT, JFE	T and							
	MOSE	ΈT.												
CO3	Evalu	ate the	perform	nance o	f rectifi	ers, filte	ers, volt	age	Cog	nitive	Ev	alı	uating	
	regula	tors and	l voltag	e ampli	fiers.									
CO4	Desig	n the ele	ectronic	circuit	s (rectif	iers, fil	ters and		Psyc	homot	or Cr	eat	ting	
	voltag	e ampli	fiers) fo	or given	specifi	cations	using							
	discrete components such as BJT, FET and MOSFET.													
		•												
	J Mapp	ing:		4				0	0	10	44		10	
		2	5	4	5	0	7	ð	<u>у</u>	10	11		12	
COI	5	-	-	-	-	-	-	-	-	-			-	

	1	4	5	-	5	U	1	0	,	10	11	14
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	3	-
CO3	-	-	3	2	-	-	-	-	-	-	-	-
CO4	-	-	3	2	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	2	-	-	-	-	-	-

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50**
ESE	50

ISE are based on practical performed/ Quiz/ **Project Based Learning**/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

** Project Based Learning - 25 Marks of ISE

Course Contents:	
Experiment No. 1:	02 Hrs
Aim and Objectives: Study of ratings of Electronic components and laboratory	
Equipments.	
Outcomes: Student will be able to learn the handling of laboratory equipments and	
identify the electronic components	
Theoretical Background: Knowledge of R, L and C components	
Experimentation: Identifying the electronic components and measuring or observing	
various signals on laboratory equipments	
Results and Discussions:	
Conclusion:	
Experiment No. 2·	02 Hrs
Aim and Objectives: Study V-I characteristics PN diode and Zener diode	02 1115
Outcomes: Student will be able to understand V-I characteristics various diodes	
Theoretical Background : V-I characteristics various diodes	
Experimentation : Performing V-I characteristics various diodes	
Results and Discussions: Comparison between Practical and Theatrical V-I	
characteristics	
Conclusion:	
Conclusion.	$02 \mathrm{Urg}$
Aim and Objectives: Design & analysis of Half wave rectifier (HWP) with & without	02 1115
filter by coloulating performance percentary	
Outcoment Student will be able to design unregulated neuron supply	
Culcomes: Student will be able to design unregulated power supply	
Theoretical Background: Rectifiers and filters	
Experimentation: Performing of Half wave rectifier (HWR) with & without filter	
Results and Discussions: Comparison between Practical & Theatrical analysis results	
Conclusion:	00.11
Experiment No. 4:	02 Hrs
Aim and Objectives: Design & analysis of Full wave rectifier (FWR) with & without	
filter by calculating performance parameters	
Outcomes: Student will be able to design unregulated power supply	
Theoretical Background: Rectifiers and filters	
Experimentation: Performing of full wave rectifier (HWR) with & without filter	
Results and Discussions: Comparison between Practical & Theatrical analysis results	
Conclusion	
Experiment No. 5:	02 Hrs
Aim and Objectives: Design & analysis of Bridge rectifier with & without filter by	
calculating performance parameters	
Outcomes: Student will be able to design unregulated power supply	
Theoretical Background: Rectifiers and filters	
Experimentation: Performing of bridge rectifier (HWR) with & without filter	
Results and Discussions: Comparison between Practical & Theatrical analysis results	
Conclusion	
Experiment No. 6:	02 Hrs
Aim and Objectives: Design & analysis of Zener shunt or Transistorized shunt	
voltage regulator.	
Outcomes: Student will be able to design Zener shunt or Transistorized shunt voltage	
regulator.	
Theoretical Background: Zener diode as voltage regulator	
Experimentation: Line regulation and load regulation of voltage regulator	

Results and Discussions: Comparison between Practical & Theatrical analysis results	
Conclusion:	
Experiment No. 7:	02 Hrs
Aim and Objectives: Design & analysis of series pass regulator with & without	
feedback	
Outcomes: Student will be able to design series pass regulator with & without	
feedback	
Theoretical Background: series pass regulator	
Experimentation: Line regulation and load regulation of voltage regulator	
Results and Discussions: Comparison between Practical & Theatrical analysis results	
Conclusion:	
Experiment No. 8:	02 Hrs
Aim and Objectives: Study of common emitter (CE) configuration using BIT	02 1113
Outcomes: Student will be able to get working operation of CE configuration	
Theoretical Background: Common Emitter (CE) configuration	
Experimentation: Derforming input output characteristics of CE configuration	
Experimentation: Performing input output characteristics of CE configuration	
Results and Discussions: Calculation of H parameter using input output	
characteristics	
Conclusion:	00.11
Experiment No. 9:	02 Hrs
Aim and Objectives: Calculation of performance parameters using characteristics of	
JFET.	
Outcomes: Student will be able to calculate	
Theoretical Background: Junction Field Effect Transistor	
Experimentation: Obtaining performance parameter using JFET characteristics.	
Results and Discussions: Comparison between Practical & Theatrical performance	
parameter.	
Conclusion:	
Experiment No. 10:	02 Hrs
Aim and Objectives: Design & analysis of Voltage divider biasing circuit.	
Outcomes: Student will be able to design Voltage divider biasing circuit	
Theoretical Background: Transistor biasing	
Experimentation: Analysis of Voltage divider biasing circuit	
Results and Discussions: Comparison between Practical & Theatrical analysis results	
Conclusion:	
Experiment No. 11:	02 Hrs
Aim and Objectives: Determination of H-parameters from transistor CE	
characteristics.	
Outcomes: Student will be able to determine	
Theoretical Background:	
Experimentation:	
Results and Discussions: Comparison between Practical & Theatrical analysis results	
Conclusion:	
Experiment No. 12:	02 Hrs
Aim and Objectives: Calculation of performance parameters (Av Ai Ri Ro) for	52 1113
single stage RC coupled amplifier	
Single stage in complete amplifier.	
Theoretical Background: Canaraliza theory of Ay, A; D; De	
Experimentation: Obtaining performance personator for single store DC coursed	
experimentation. Obtaining performance parameter for single stage KC coupled	
ampimer	

Results and Discussions: Comparison between Practical & Theatrical analysis results	
Conclusion:	
Project Based Learning	Entire
	Semester
Textbooks:	
1. Allen Mottershed —'Electronic devices & circuits'-Prentice- Hall India	
2. J. Millman&C.Halkias -'Electronic devices & circuits'-IIndEdition- Tata McC	Jraw Hill
Publication	
3. N.C. Goyal& R.K. Khetan-' A Monograph on Electronics Design Principles'-Vth	Edition-
Khanna Publishers	
References:	
1. David A. Bell — 'Electronic devices & circuits'- IV th Edition- Prentice- Hall India	
2. Robert L. Boylsted, Louis Nashelsky- 'Electronic devices & circuit theory'- (IXtheory')	¹ edition)-
Pearson Education	
3 National Semiconductor Data Manual.	
Measurable Students Learning Outcomes :	
1. Compare and contrast the amplifier circuits implemented using BJT, J	FET and
MOSFET.	

2. Analyze the performance of rectifiers, filters and voltage amplifiers.

Project Based Learning

Course Name: Analog Circuit I Lab Course Code: Course Code: UETC0331

For example:-

Problem Statement:

Most modern day home appliances include electronic circuits such as microcontroller, LCD display etc which need DC power supply. Could you come up with a solution that can help them regulated DC power with renewable energy sources.

Abstract of the Problem:

The problem defined above is with the intention that the students should be able to understand how to convert renewable energy source to regulated DC power.

Activities/Steps/Milestones with duration to solve the problem:

- Milestone 1 : (1 Week)
 - Introduction to PBL
 - Why and What is PBL
 - Problem discussion and Team formation
 - Rubrics Plan
- Milestone 2 : (2 Week)
 - Critical Thinking

• Project Specifications

• Milestone 3 : (1 Week)

- Circuit diagram
- o Components Survey
- Milestone 4 : (1 Week)
 - \circ $\,$ In semester examination for 10 Marks (Case Study and Presentation) $\,$
- Milestone 5 : (1 Week)
 - Circuit Mounting and Testing on Breadboard
- Milestone 6 : (2 Week)
 - Circuit Mounting, Soldering and Testing on General Purpose PCB.
 - Milestone 7 : (1 Week)
 - o Results

٠

- Discussion Project Costing and Simulations (1 Week)
- Milestone 8 : (1 Week)
 - o Reports
 - \circ Presentation
- Milestone 9 : (1 Week)
 - In semester examination for 15 Marks (Reports, Product Validation and Question Answering)

• Assessment Scheme:

Type of Assessment	Marks
In-Semester Examination 1	10 (Case Study & Presentation)
In-Semester Examination 2	15(Report, Product Validation and Question Answering)

• Evaluation Scheme for 25 Marks

Heads	Marks
Case Study	05
Presentation	05
Report	05
Product Validation	05
Question Answering	05

Title of the Course: Digital System Lab	L	Т	Р	Credit	
Course Code: UETC0332			02	01	
Course Pre-Requisite: There are no pre-Requisite for this course, however the knowledge					
of numbering system and working of basic gates will be beneficial.					

Course Description: This course focuses on designing of combinational and sequential circuits.

Course Objectives: This course aims to

1. Understand the operation of combinational circuits and its applications

2. Demonstrate the operation of several types of flip-flops

3.Design and analyze different types of counters and sequence generator.

4. Understand the basic principles of shift registers and RAM

Course Learning Outcomes:

CO	After the completion of the course the student	Bloom's Cognitive	
	should be able to	level	Descriptor
CO1	Design and Perform combinational logic circuits.	Synthesis	Design
CO2	Design and Perform sequential logic circuits.	Synthesis	Design
CO3	Design an application based on combinational and	Synthesis	Design
	sequential logic circuits.		

CO-PO Mapping:

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	3	3	3	2						
CO2	3	1	3	3	3	2						
CO3	2	2	3	2	3	2						

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	25
ESE	50

2Hrs.

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:

Experiment No. 1:---

Aim and Objectives: Design and implement NAND and NOR as Universal gate Outcomes: Students will be able to design various gates using NAND and NOR Theoretical Background: Logic gates. Experimentation: Observe the truth table of all gates by following the design Results and Discussions: Truth table verification

Conclusion: Fundamental and derived gates can be designed using NAND and NOR gate.

Experiment No. 2:	02Hrs.
Aim and Objectives: Design and implement Adder and Subtractor Outcomes:	
Students will be able to design various gates using NAND and NOR	
Theoretical Background: Logic gates.	
Experimentation: Observe the truth table	
Results and Discussions: Truth table verification	
Conclusion: Fundamental and derived gates can be designed using NAND and	
NOR gate.	
Experiment No. 3:	02Hrs.
Aim and Objectives: Study of K- map	
Outcomes: Students will be able to reduce Boolean function using K-map and can	
implement it using universal gate.	
Theoretical Background: K-map design.	
Experimentation: Observe the truth table.	
Results and Discussions: Truth table verification	
Conclusion: Boolean function can be reduced using K-map and implementit using	
universal gate.	
Experiment No. 4:	02Hrs.
Aim and Objectives: Design and Implement 4-bit Binary code to Gray code	• • •
converter	
Outcomes: Students will be able to design code converter and implement using	
logic gates.	
Theoretical Background: K-map.	
Experimentation: Observe the truth table	
Results and Discussions: Truth table verification	
Conclusion: Code converter can be designed using K-map.	
Experiment No. 5:	02Hrs.
Aim and Objectives: Design and implement following Boolean function using	0_1101
Mux	
Outcomes: Students will be able to design any Boolean function using Mux.	
Theoretical Background: Multiplexer.	
Experimentation: Observe the truth table	
Results and Discussions: Truth table verification	
Conclusion: Boolean function can be implemented using multiplexer	
Experiment No. 6	02Hrs
Aim and Objectives: Design and implement Full Adder using Demux Outcomes:	021115.
Students will be able to design Full adder using Demux	
Theoretical Background: De multiplexer theory	
Experimentation: Observe the truth table	
Results and Discussions: Truth table verification	
Conclusion: Full Adder can be implemented using $De multiplexer$	
Evneriment No. 8	02Hrs
Aim and Objectives: Design and implement S-R flip-flop and D flip-flop and IK	021115.
flin-flop using logic gates	
Outcomes: Students will be able to flip flops using logic gates	
Theoretical Background: Sequential logic circuits	
Experimentation: Observe the truth table	
Results and Discussions: Truth table verification	
Conclusion: Flip flops can be designed using logic gates	
conclusion. I np nops can be designed using logic gates.	

Experiment No. 9:	
Aim and Objectives: Design and implement Johnson Counter	
Outcomes: Students will be able to design Johnson Counter using D flip flops.	
Theoretical Background: Counter theory.	
Experimentation: Observe the truth table	
Results and Discussions: Truth table verification	
Conclusion: Johnson Counter can be designed using D flip flops	
Experiment No. 10:	02Hrs.
Aim and Objectives: Design and implement Shift Register.	
Outcomes: Students will be able to design Shift register using D flip flops.	
Theoretical Background: Shift Register theory.	
Experimentation: Observe the truth table	
Results and Discussions: Truth table verification	
Conclusion: Data is shifted right or left according to design.	
Experiment No. 11:	
Mini Project : Fairly complex application oriented mini-project with digital input	
and output and appropriate display	
Textbooks:	
1. Anand Kumar 'Fundamentals of Digital Circuits' PHI	
2. M. Morris Mano 'Digital Design' (Third Edition),. PHI	
References:	
1] Willim I. Fletcher.'An Engineering Approach to Digital Design'-PHI/ Pearson	
2] NormanBalabanianBradle Carlson. 'Digital Logic Design Principals,.' Wiley Pub	olication.
3] Rajkamal 'Digital Systems Principals and Design'—Pearson	
4] A.P. Malvino, D.P. Leach 'Digital Principles & Applicatios' -VIth Edition-Tata M	/IcGraw
Hill, Publication.	
5] R.P. Jain-'Modern Digital Electronics' IIIrd Edition- Tata McGraw Hill, Publicat	tion

Title of	f the Course: Object Oriented Programming Lab		L	Т	P	Credit
Course	e Code:UETC0333				02	01
Course Pre-Requisite: A working knowledge of C programming is sufficient.						
Course	e Description:					
This co	ourse is an extension of courses exposing students to	the many o	conc	epts of	progra	amming.
The co	urse is an expository of the object-oriented program	ming metho	odolo	ogy wit	h emp	hasis on
softwar	re design and code reuse as its core objectives. As a	practical co	urse,	, the fo	cus is	to equip
student	s with adequate high-level object-oriented programm	ing techniqu	les r	equired	for su	ccessful
design,	development, and deployment of today's complex	software s	syste	ms. Fu	rtherm	ore, the
student	s are actually mentored to master how the C++ and Ja	ava technolo	ogy c	an be u	sed to	develop
moderr	n software systems.					
Course	e Objectives:					
1. Und	erstand fundamentals of programming such as variable	es, condition	nal ai	nd itera	tive ex	ecution,
method	ls, etc.					
2. Und	erstand fundamentals of object-oriented programmin	ng in C++ in	nclu	ding de	fining	classes,
invokir	ng methods, using classes.					
3. Be a	ware of the important topics and principles of software	e developme	ent.			
4. Hav	e the ability to write a computer program to solve spec	cified proble	ems.			
5. Be a	ble to use the C++ concepts and Java SDK environme	nt to create,	debu	ig and r	un pro	grams.
Course	e Learning Outcomes:				-	
CO	After the completion of the course the student	Bloom's C	Cogn	itive		
	should be able to	level		Descri	ptor	
CO1	Explain the basics of objective oriented	Cognitive		Explai	n	7
	programming concents	-		-		

	programming concepts.		
CO2	Model simple OOPs using classes and objects.	Cognitive	Apply
CO3	Demonstrate use of polymorphism and Inheritance	Cognitive	Demonstrate
CO4	Illustrate various operations related to file handling.	Cognitive	Apply

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	3	3	1	1	2	2	3	2	3	3
CO2	3	3	2	2	2	3	1	1	2	1	3	2
CO3	2	2	1	1	1	1	1	1	1	1	1	2
CO4	3	2	2	2	3	2	1	1	1	1	2	1

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	25
ESE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:	1						
Experiment No. 1:	02 Hrs.						
Aim and Objectives: To study concepts of Object oriented programming.							
Outcomes: After the completion of the experiments the student should be able to							
Explain the basics of objective oriented programming concepts.							
Theoretical Background: Basic knowledge of programming							
Experiment No. 2:	02 Hrs.						
Aim and Objectives: To study of classes and Objects.							
Outcomes: After the completion of the experiments the student should be able to							
write declaration of class and should explain types of defining functions in class.							
Experiment No. 3:	02 Hrs.						
Aim and Objectives: To Study Constructor and destructor.							
Outcomes: After the completion of the experiments the student should be able to							
explain syntax and types of different constructors and destructor.							
Experiment No. 4:	02 Hrs.						
Aim and Objectives: To Study Overloading.Outcomes: After the completion of							
the experiments the student should be able to explain function and operator							
overloading.							
Experiment No. 5:	02 Hrs.						
Aim and Objectives: To Study Concept of Friend function.Outcomes: After the							
completion of the experiments the student should be able to explain definition and							
declaration of friend function.							
Experiment No. 6:	02 Hrs.						
Aim and Objectives: To Study Inheritance.							
Outcomes: After the completion of the experiments the student should be able to							
explain importance and various types of Inheritance in OOP							
Experiment No. 8:	02 Hr_{0}						
Aim and Objectives: To Study Polymorphism	02 1118.						
Outcomes: After the completion of the superiments the student should be able to							
Outcomes: After the completion of the experiments the student should be able to							
explain concept of Polymorphism.							
Experiment No. 9:	02 Hrs.						
Aim and Objectives: To Study File handling.							
Outcomes: After the completion of the experiments the student should be able to							
explain concept of file handling in OOP.							
Experiment No. 10:	02 Hrs.						
Aim and Objectives: Mini project based on any engineering application.							
Outcomes: After the completion of the experiments the student should be able to							
explain concept of file handling in OOP.							
Textbooks:							
1. E Balgurusamy – 'Object oriented programming with C++' -, IIIrd Edition- Tata	Mc- Graw Hill						
Publication							
2. Rajesh K.Shukla-'Object – Oriented Programming in C++'WILEY, INDIA .							
References:							
1. Schildt – The Complete Reference C++' - IIIrd Edition - Tata McGraw Hill Pub	lication						
2. D Ravichandran 'Programming with C++ '-IInd Edition- Tata McGraw Hill Pu	blication						
3. RohitKhurana-'Object oriented programming with C++'-second edition-Vikas p	ublication						

Title of the Course: Electronic Instrumentation &	L	Т	P	Credit						
Measurement Lab Course Code: UETC0334	-	-	02	01						
Course Pre-Requisite: Basics of electronics										
Course Description:										
The course aims to Provide knowledge of different parts of Measure	The course aims to Provide knowledge of different parts of Measurement system,									
instrumentation system & different types of transducers										
Course Objectives:										
This course aims to										
1. Provide introduction of different types of Transducers & sensor	5									
2. Provide knowledge of different parts of Measurement system										
3. Provide basic knowledge of measurement system										
4. Provide basic understanding of different Electronic instruments										
5. Provide knowledge of different types of bridges										
Course Learning Outcomes:										
CO After the completion of the course the student B	oom's	De	escript	or						
should be le	vel									
able to										
CO1 Select appropriate transducer as per required Co	ognitive	Ar	nalysis	5						
CO2 Identify suitable linear & nonlinear circuits	2Identify suitable linear & nonlinear circuitsCognitiveKnowledge									
	•,•		1. 4							
CO3 Illustrate analog signals parameters related to	ognitive	Ap	plicat	10n						
electronic measurement										
CO4 Explain the basic features & block diagram of $ $ Co	ognitive		mprei	nension						
oscilloscope										

CO-PO Mapping:

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	3	3	1	-	-	-	-	-	-
CO2	3	3	3	2	2	2	-	-	-	-	-	-
CO3	3	1	3	2	1	1	-	-	-	-	-	-
CO4	3	1	3	3	3	1	-	-	-	-	-	-

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks							
ISE	50							
ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group								

Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:	
Experiment No. 1:	02 Hrs.
Aim and Objectives: Study of weight measurement using strain gauge	
Outcomes: Students will be able to explain application of strain gauge for weight	
measurement	
Theoretical Background: Principle of operation of strain gauge	
Experimentation: Study datasheets of various op-amp ICs to study their electrical	
parameters	
Results and Discussions: Measure the weight placed on load cell	
Conclusion: Strain gauge can be used as load cell for measure the unknown	
weights	
Experiment No. 2:	02 Hrs.
Aim and Objectives: Study of displacement measurement using LVDT.	
Outcomes: Students will be able to explain operation of LVDT	
Theoretical Background: Principle of operation of LVDT	
Experimentation: Measure the displacement of the core in either direction	
Results and Discussions: Compare the actual displacement and observed	
displacement	
Conclusion: LVDT can be used to measure displacement of any object in either	
direction by connecting the object to the core	
Experiment No. 3:	02 Hrs.
Aim and Objectives: Study of temperature measurement using RTD	
Outcomes: students will be able to explain operation of RTD	
Theoretical Background: Principle of operation of RTD	
Experimentation: Immerse the RTD in boiling water & note down the	
temperature of water and corresponding resistance of RTD indicated on DPM.	
Results and Discussions: Plot a graph of temperature v/s Resistance of RTD.	
Conclusion: It is observed that as temperature increases resistance of RTD also	
increases.	
Experiment No. 4:	02 Hrs.
Aim and Objectives: Study of angular displacement measurement using	
capacitive pickup	
Outcomes: Students will be able to explain operation of capacitive pick up for	
angular displacement measurement	
Theoretical Background: Principle of operation of capacitive pick up	
Experimentation: Rotate the shaft in clockwise direction. Note down the reading	
corresponding to the input angular displacement and indicated angular	
displacement on the DPM	
Results and Discussions: Note down the reading corresponding to the input	
angular displacement and indicated angular displacement on the DPM	
Conclusion: The angular displacement of capacitive transducer gives linear	
change in the output.	
Experiment No. 5:	02 Hrs.
Aim and Objectives: Study of speed measurement using proximity switch &	
photoelectric pick up.	
Outcomes: Students will be able to explain operation of proximity switch &	
photoelectric pick up for measurement of speed	
Theoretical Background: Operating principle of proximity switch and photo	

transistor	
Experimentation: Increase the speed of motor. Measure the speed by switching	
proximity switch and phototransistor.	
Results and Discussions: If speed of shaft is 1500 rpm this corresponds to 25	
revolutions per second & hence frequency of pulse is 25 Hz or delay between	
successive pulses is 40 msec. This time period is measured & an average time	
period for successive pulse is calculated. Then a simple formula is used to	
calculate the gating period for digital counter	
calculate the gaving period for digital counter.	
Conclusion: speed of motor can be found out by using proximity switch and	
phototransistor	
Experiment No. 6:	02 Hrs.
Aim and Objectives: Study of CRO.	
Outcomes: Students will be able to explain use of CRO and its various knobs Theoretical Background: Operating principle of CRO	
Experimentation: Display various signals on CRO using function generator.	
Measure the amplitude & frequency of the signal	
Results and Discussions: compare the actual & observed values of amplitude &	
trequency	
Conclusion: CRO can be used to observe o/p of various systems	
Experiment No. 7.	02 Hrs
Aim and Objectives: Measurement of phase and frequency by lissations pattern	02 1115.
using CRO	
Outcome: Students will be able to determine frequency of unknown signal &	
phase difference between two signals	
Theoretical Background: Operating principle of CRO & function generator	
Experimentation: Lissajious figure is a stable pattern that is obtained by	
connecting known frequency to vertical input & varying the frequency of the	
known standard signal connected to the horizontal input of a dual oscilloscope	
activated in X-Y mode	
Results and Discussions: The unknown frequency is calculated using formula,	
$F_{V} = F_{H} * (T_{H} / T_{V})$	
Phase angle $\theta = \sin^{-1} Y_{HY} / Y_{M}$.	
Conclusion: Thus we can measure frequency and phase by observing Lissajous	
pattern on CRO.	
Experiment No. 8:-	02 Hrs.
Aim and Objectives: Study of function generator	
Outcomes: Students will be able to demonstrate use of function generator	
Theoretical Background: Internal block diagram of function generator	
Experimentation: Observe sine, square and triangular waveforms of various	
amplitude & frequency.	
Results and Discussions: Discuss the functionality of various knobs of front panel	

of function generator						
Conclusion: Using function generator sine, square and triangular waveforms of						
various amplitude & frequencies can be generated						
Experiment No.9:-	02 Hrs.					
Aim and Objectives: Study of linear displacement measurement using linear						
potentiometer						
Outcomes: Students will be able to explain operation of potentiometer for						
displacement measurement						
Theoretical Background: Principle of operation of potentiometer.						
Experimentation: By moving the shaft, the resistance of potentiometer is						
changed. The displacement & corresponding resistance of potentiometer is						
indicated on DPM						
Results and Discussions: Observe displacement of shaft and resistance of						
potentiometer.						
Conclusion: The resistance of the potentiometer varies linearly with variation in						
displacement						
Experiment No. 10:-	02 Hrs.					
Aim and Objectives: Study of DC bridges						
Outcomes: Students will be able to calculate value of unknown resistance using						
DC bridge						
Theoretical Background: Principle of operation of DC bridges						
Experimentation: For a particular bridge values of resistors for different arms						
will be given. Students will have to calculate value of unknown resistor using						
bridge balance condition						
Results and Discussions: Calculate value of unknown resistor.						
Conclusion: DC bridges can be used to determine value of unknown resistor.						
Textbooks:						
1] A course in Electrical, Electronics measurement and Instrumentation, A.K. Sawh	ney					
2]Electronic Instrumentation, H. S. Kalsi, MGH, 3rd Edition						
References:						
1] Electronic Instrumentation and Measurement Techniques, Welfrick Cooper.						
2] Instrumentation for Engineers And Scientists, John Turner, II Edition, Wiley						
3] Electronic Instrumentation and Measurements, David A Bell, Third Edition, Oxfo	ord					
4]Instrumentation for Engineering Measurements, James W Dally, II Edition, Wile	у					
Experiment wise Measurable students Learning Outcomes:						
1) Students will be able to explain application of strain gauge for weight measureme	nt					
2) Students will be able to explain operation of LVDT						
3) Students will be able to explain operation of RTD						
4) Students will be able to explain operation of capacitive pick up for angular display	cement					
measurement5) Students will be able to explain operation of proximity switch &						
photoelectric pick up for measurement of speed6) Students will be able to explain us	se of					
CRO and use of various knobs on its front panel 7) Students will be able to determine	e					
frequency of unknown signal & phase difference between two signals8) Students wi	ll be able					
to demonstrate use of function generator.9) Students will be able to explain operation	n of					
potentiometer for displacement measurement 10) Students will be able to calculate v	alue of					
unknown resistance using DC bridge						

Title of	f the C	ourse: A	Analog	g Circu	its - Il	[I	4	Т	P	Credit
Course	e Code	UETCO	0401						0.	3	-	-	03
Course	e Pre-R	Requisit	e: Ana	log Cir	cuits –	I							
Course Objectives:													
1. To explain the frequency response of BJT (CE) and MOSFET (CS) amplifiers.													
2. To explain the working of electronic circuits like power amplifiers, feedback													
amplifiers, wave shaping and regulators.													
3. To explain the small signal models used for performance analysis of electronic													
4	circuits.												disarata
4.	compo	nents		methou	5 01	uesigiii	ing the	electro		iicui	is i	ısıng	uisciele
Course	Lear	nono Ou	tcome	G •									
	After	the cor	nnletic	<u>s.</u> m of th		rse the o	studen	t	Bloo	m's (്റര	nitive	
00	shoul	d be	npien			ise the	stuation		level	III 5 V)escrii	ntor
	able t	a 50							10 101			eseri	
CO1	Analy	ze the p	berforn	nance c	of elect	ronic ci	rcuits	like	Cogr	nitive	A	nalyz	zing
	ampli	fiers, fe	edback	amplit	fiers) u	sing sm	all sig	nal	U			5	C
	mode	ls such a	as hybr	id-para	meter	model.	U						
CO2	Evalu	ate the	perfor	mance	of pow	ver amp	lifiers,		Cogr	Cognitive Evaluating			ting
	feedb	ack amp	lifiers,	wave	shapin	g, & Vc	ltage					_	
	Regul	ators											
CO3	Desig	n the ele	ectroni	c circu	its (po	wer am	olifiers	, wave	Cogr	C	Creating		
	shapii	ng, & V	oltage	Regula	tors) f	or given	l						
	specif	fications	using	discret	e com	ponents	such a	s BJT					
	and IC	2							_				
CO4	Select	t approp	riate p	ower a	mplifie	ers, feed	back	2	Psycho- A			Applying	
	amplı	fiers, wa	ave sha	iping &	z Volta	ige Regi	ulators	for	motor				
	given	applica	tion.										
) Morr	ning.											
		ning.	2	1	5	6	7	Q	0	10		11	12
CO	1	4	5	-	5	U	1	0	,	10		11	14
CO1	3					1						3	+
001	5											5	
CO2			3	2									1
			_										
CO3			3	2	1								
CO4						2							

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussion	ons etc.					
MSE: Assessment is based on 50% of course content (Normally first three modules)						
ESE: Assessment is based on 100% course content with60-70% weight age for course						
content (normally last three modules) covered after MSE.						
Course Contents:						
Unit 1: Frequency Response Amplifiers	08 Hrs.					
Low Frequency: BJT (Common Emitter) and FET (Common Source) Amplifier,						
Effect of Internal Transistor Capacitances, Miller Effect,						
High Frequency: T-Model, Common Base Short Circuit Current Gain, Hybrid π -						
model. Common Emitter Short Circuit and resistive Current Gain. Gain Bandwidth						
Product. (Numerical are expected).						
Unit 2: Multistage Amplifiers	08 Hrs.					
Need of Cascading, Parameter evaluation such as Ri, R0, Av, Ai & Bandwidth for						
General Multistage Amplifier Different Types of Coupling Analysis & Design of						
RC coupled direct coupled & voltage series feedback (Two stage) amplifier						
Cascade FET Ampifier						
Unit 3: Power Amplifiers	08 Hrs					
Need of Power amplifier classification of power amplifier. Power considerations	00 1115.					
Distortion in power amplifiers: Phase Frequency amplitude/ harmonic / non						
linear distortion amplitude distortion using Three point method. Class A single						
anded transformer coupled amplifier & class A Push null amplifiers analysis and						
design Class B amplifier & class B push pull amplifier analysis and						
arossover distortion class AB Duch null amplifiers analysis and design						
Complementary symmetry power emplifier						
Unit 4. Easthack Amplifians	00 I Inc					
Constal theory of feedback measure for negative feedback. Types of negative	00 115.					
foodbook in transistor circuits. Voltage series Current series Voltage shunt						
Current shunt foodback amplifiers. Derlington pain Derlington amplifier using						
Current shunt feedback amplifiers, Darington pair, Darington amplifier using						
foodback amplifier						
	00 11					
Unit 5: wave Snaping Circuits	08 Hrs.					
RC Circuits:- Low Pass & High Pass (square & step response), High pass as a						
differentiator, Low pass as integrator.						
Clipping circuits:- Classification, diode clippers, transistor clippers, Transfer						
characteristics, Design & analysis of clipper circuits.						
Clamping circuits:- Classification, clamping operations, Clamping circuit						
theorem, practical clamping circuits,						
Voltage multipliers:- Doubbler, Trippler & Qudrappler circuits.	00.77					
Unit 6: IC Voltage Regulators	08 Hrs.					
IC Voltage Regulators:- Study and design of regulators using IC's:/8XX, /9XX,						
LM723, LM317, Switching regulator: Introduction, study of LM3524						
Textbooks:	~ ****					
1. J. Millman & C.Halkias - Electronic devices & circuits'-II nd Edition- Tata Mc	Jraw Hill					
Publication						
2. Allen Mottershed — 'Electronic devices & circuits'-Prentice- Hall India	h 					
3. N.C. Goyal & R.K. Khetan-' A Monograph on Electronics Design Principles'-V ^t	" Edition-					
Khanna Publishers						
4. J. Milman & H. Taub ' Pulse Digital & Switching Waveforms' - II nd Edit	10n- Tata					
McGraw Hill Publication						

References:

1. David A. Bell — 'Electronic devices & circuits'- IVth Edition- Prentice- Hall India

2. J Millman & A. Grabel-' Microelectronics'- IInd Edition- McGraw Hill International Editions

3 National Semiconductor Data Manual.

4 M.S. Roden, G.L. Carpenter ' Electronic Design- From Concept to reality'- IVth Edition-Shroff publisher & Distributors

Unit wise Measurable students Learning Outcomes:

- 1. **Apply** the small signal models (tools) to **analyze** the performance of feedback amplifiers built using BJT.
- 2. **Analyze** the performance of feedback amplifiers, wave shaping, and regulators using BJT, IC and discrete components.
- 3. **Analyze** and **Design** power amplifiers, feedback amplifiers and wave shaping using BJT and discrete components.
- 4. Compare and Contrast the single stage and multistage amplifiers.
- 5. **Evaluate** the performance of power amplifiers in terms of efficiency and harmonic distortion.
- 6. **Comprehend** regulation of discrete and IC voltage regulators.

Title of	the Course: Linear Integrated Circuits	L	Т	Р	Credit				
Course	e Code: UETC0402	03	-	-	03				
Course Pre-Requisite: Transistor as an Amplifier									
Course Description:									
The course aims to provide knowledge of operational amplifier, some special purpose ICs									
like IC 555 & IC565(PLL) and their applications.									
Course	Objectives:								
This co	urse aims to								
1. Prov	ide knowledge of op-amp & its electrical parameters								
2. Prov	ide knowledge of op-amp configurations & frequency res	ponse							
3. Stud	y linear and non linear applications of op-amp								
4. Prov	ide basic knowledge of special purpose ICs like IC555 an	d IC 565							
Course	E Learning Outcomes:								
CO	After the completion of the course the student	Bloom's	De	script	or				
	should be	level							
	able to								
CO1	Discuss the op-amp's basic construction,	Cognitive	Co	mprel	hension				
	characteristics, parameters, various configurations of								
	op-amp								
CO2	Evaluate different parameters of op-amp viz Slew	Cognitive	Ev	aluate	;				
	rate, CMRR, frequency response								
CO3	Design linear and non-linear circuits like active	Cognitive	Cre	eate					
	filters, signal generators using op-amp.								
CO4	Design the application of timer IC 555 for	Cognitive	Cre	eate					
	multivibrators								
CO5	To test the simulation of op-amp circuits	Cognitive	An	alyze					
	-								

CO-PO Mapping:

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	3	3	3	2	-	-	-	-	-	-
CO2	3	1	3	3	3	2	-	-	-	-	-	-
CO3	2	2	3	2	3	2	-	-	-	-	-	-
CO4	2	2	3	3	3	2	-	-	-	-	-	-
CO5	1	2	3	3	3	3	-	-	-	-	-	-

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussions etc

MSE: Assessment is based on 50% of course content (Normally first three modules)							
ESE: Assessment is based on 100% course content with60-70% weightage for course content							
(normally last three modules) covered after MSE.							
Course Contents:	< 11						
Unit 1: Introduction to op-amp Block diagram of OP-AMP, Explanations of each block, Differential Amplifier configurations, Differential amplifier analysis (AC & DC) for dual-input balanced- output configuration using 'r' parameters, ideal parameters and practical parameters of OP-AMP and their comparison, internal circuit of IC741	6 Hrs.						
Unit 2: Op-amp configurations & frequency response: Concept of feedback & their types, Virtual ground concept, Open loop configuration, closed loop configuration, unity gain amplifier, frequency Response of both configurations, Stability considerations, Frequency Compensation	6 Hrs.						
Unit 3: Applications of Op-amp Summing, Scaling & Averaging Amplifiers using Op-amps, Differential amplifier using op-amp, Subtractor Circuit, Instrumentation amplifier, V to I & I to V Converter, Precision Rectifiers, Log & Anti-log Amplifiers, Study of comparator, Schmitt Trigger, Integrators & differentiators, Peak Detectors, Sample & Hold Circuits, A-D and D-A techniques	6 Hrs.						
Unit 4: Active Filters Introduction, Analysis & Design of Butterworth filters: High Pass filter, Low Pass filter (First & Second order), Band Pass filter, Band Reject filter, All Pass Filter, Introduction to Chebyshev Filter.	6 Hrs.						
Unit 5: Signal Generators Analysis & Design of Square wave generator, Triangular wave generator, Sawtooth wave generator. Analysis & Design of RC phase shift oscillator, RC wein bridge oscillator, Colpitts oscillator, Hartley oscillator.	6 Hrs.						
Unit 6: Special purpose ICs IC 555 Timer: Block Diagram, Operating Principle, Multi-vibrator using IC 555. IC 565 PLL: Operating Principle, applications-Frequency synthesizer FM demodulator, AM demodulator, FSK demodulator	6 Hrs.						
 Textbooks: 1) Ramakant A. Gaikwad, "Op Amps and Linear Integrated Circuits", Pearson Educa second and latest edition. 2) D.Roy Choudhary, Shail Jain, "Linear Integrated Circuits", New Age Int 	ation						
 Reference Books: 1) Robert Coughlin, Fredric Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth edition, PE, 2006. (Ch-6) 2) David Bell, "Operational Amplifiers and Linear ICs", Third ed, Oxford University Press 3) B. Somanathan Nair, " Linear Integrated Circuits- Analysis, Design & Applications", Wiley India. 4) Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Ta McGraw Hill., Third Edition 							

5) G.B.Clayton, "Operational Amplifiers", International Edition

Unit wise Measurable students Learning Outcomes:

Upon successful completion of this course students will be able to:

- 1. Calculate & analyze various electrical parameters of op-amp.
- 2. Analyze frequency response of inverting and non-inverting amplifiers
- 3. Design various linear and non-linear applications of op-amp
- 4. Analyze frequency response of active filters.
- 5. Design various waveform generators
- 6. Analyze o/p waveforms of astable and monostable multivibrators.

Title of	f the Course: Electromagnetic Engineering	L	Т	Р	Credit						
Course	e Code: UETC0403	03	01	-	04						
Course	e Pre-Requisite: Student should have clear unders	standing	of ma	thema	atics,	vector					
algebra	, complex numbers & differential equations										
Course	Course Description:										
Ele	Electromagnetic Engineering is offered as the core course at the fourth semester of										
E&TC	E&TC Engineering undergraduate programmer. It consists of 6 units. First three units										
constitu	constitute study of vector algebra, co-ordinate system, Electrostatics & boundary conditions.										
The las	The last three units contains the study of steady magnetic fields, wave propagation and										
transmission lines.											
This	course intends to build the competency in the stud	dents to	under	stand							
electroi	magnetic engineering. This subject is useful to un		the co	ourses	like /	Antennas &					
wave p	ropagation & Microwave Engineering. In addition	n, synab	us of t	nis co	urse 1	s included					
In com	Objectives										
	on basis of Vastor & so ordinate systems										
1. Exp	ribe fundamentals of static electromagnetic fields										
2. Desc 3 Defin	a le derive different laws in electrostatic & electror	nagnetic	fields								
4 Appl	v different laws to derive Maxwell's equations in c	lifferent	forms	(Poir	nt Inte	oral form)					
5 Deve	Ion wave equations & understand concept of wav	e propa	ration	in dif	ferent	media					
5. Deve 6. Evol	ain concepts of transmission lines	c propag	Sation	in un		media					
0. Expl	Learning Outcomes:										
Course	e Learning Outcomes.										
CO	After the completion of the course the	Bloom	's Tax	onom	у						
	student should be able to	level			Desc	riptor					
CO1	Explain the fundamentals of Electrostatic and	Cognit	ive		Expl	ain					
	Electromagnetic fields.	(Comp	rehens	sion)							
<u> </u>	Angly Cours' law America Low Dist Sourcet	Coordit									
	Apply Gauss law, Ampere's Law, Biot-Savart	Cognit	ive		Anni						
	law, Faraday's law and laws related with	(Appin	cation,)	Аррі	ly					
	steady magnetic field while solving problems										
	in Electrostatic and Electromagnetic fields.										
CO3	Develop field equations from understanding of	Cognit	ive		Deve	elop					
	Maxwell's Equations.	(Synthe	esis)								
CO4	Extend the knowledge of basic properties of	Cognit	ive		Exte	nd					
	transmission lines to analyze electromagnetic	(Comp	rehens	sion)							
	wave propagation in generic transmission line										
	acometries										
	Demonstrate methometical skills whether it	Darrel	mat-		Dar	onotrata					
005	Demonstrate mathematical skills related with	rsycho	inotor		Dem	onstrate					
	differential, integral and vector calculus.	(sel)									

CO-PO	Mapr	oing:										
CO		8]	PO					
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	_	-	-	-	-	1	3	2	3	-	-
CO 2	3	2	2	_	2	2	1	3	2	_	_	_
CO 3	3	1	1	-	_	2	1	3	2	3	3	3
CO 4	2	1	1	_	3	3	_	3	_	_	-	_
CO 5	3	_	_	_	_	_	_	3	2	3	2	2
000											2	2
Assessm Teacher Two con and one	ents : Asses pone EndSe	ssment nts of I emester	: n Seme Exam	ester Ev ination	valuatio (ESE)	on (ISE having	E), One g 20%,	Mid Se 30% ar	emester nd 50%	Exami weight	inatior ts resp	n (MSE) ectively.
Assessm	nent					Ν	Marks					
ISE 1						1	10					
MSE						3	30					
ISE 2						1	10					
ESE						5	50					
MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.												
LINIT I		ndinat	o avat	ome. I	laatar	Algob		ordina	to avat	oma (~1	
Diverger distributi	co-o lice & on. ui	rumat Grad	ient, (ess theo	Coulom Dorem.	b's lav	w, line	e, Surf	ace &	Volui	ne Ch	arge	6 Hrs
UNIT-II Electrostatic Fields: Electric Field Intensity, Electric Field due to infinite line and surface charges, Electric Flux Density, Gauss law (differential and integral form) and its applications, Divergence Theorem, Electric Potential and gradient. Work done Energy Density, Electric Directo and gradient.								e to ntial ntial	8 Hrs			
and gradient. Work done, Energy Density, Electric Dipole and moment UNIT-III Dielectrics & Boundary conditions: Polarisation in Dielectrics, Boundary conditions for Dielectric and Dielectric, Conductor and Dielectric, Conductor and free space, Method of Images for point and line charge,Continuity equation.										5 Hrs		
UNIT IV Magnetostatic Fields: Biot savart law, Magnetic Field Intensity due to infinite and finite line, Ampere's Circuital Law in integral and differential form, Magnetic flux density, Magnetic boundary conditions, vector magnetic potential									due ntial netic	7 Hrs		
UNIT V form for medium,	Wav vario skin	ve Propose ous fiel depth, l	pagati lds, W Po <u>y</u> ntir	on: Ma ave eq n <u>g th</u> eor	axwell' uations rem, Re	s Equa , wave eflectio	ations i e propa o <u>n of</u> pl	n point gation ane wa	t form throug ve	& Inte h diffe	egral erent	7Hrs
medium, skin depth, Poynting theorem, Reflection of plane wave. UNIT VI Transmission Lines: Transmission Line equations, Characteristic equation of infinite Transmission Line, Uniform terminated Transmission Line, Input impedance, Phase velocity and group velocity, Short circuited and open circuited line. Reflection coefficient VSWR smith chart									istic Line, open	5Hrs		

Textbooks:

- 1. Engineering Electromagnetics William .H. Hayt and J A Buck 7th Edition 2011.
- 2. Electromagnetic with applications J.D. Kraus. (MGH Publications)- 4th Edition

3. "Electromagnetic Waves and Radiating Systems", E. C. Jordan & K. Balman, 2nd edition, PHI.

References:

1. Electromagnetic Field Theory- Rakhesh Singh Kshetrimayum – Cengage Publishing – 2012

2. . Principles of Electromagnetics - Matthew N O. Sadiku – 4th Edition, Oxford publication 2009.

3. Fundamentals of Engineering Elecromagnetics – Sunil Bhooshan – Oxford University press. 2012.

4. Elements of Electromagnetic fields - Surinder P.Seth (Dhanpat Rai Publications)

5. Lectures on Electricity & Magnetism by Prof. Walter Levin from MIT USA

Unit wise Measurable students Learning Outcomes: Upon successful completion students will be able to

1. Demonstrate mathematical skills related with differential, integral and vector calculus.

2. To Explain fundamentals of electrostatic fields and Apply coulomb's law, Gauss's law in

integral & point form while solving problems in electrostatic fields.

3. Extend the knowledge of boundary conditions.

4. Apply different laws of magnetic fields. (biot savart law, stoke's theorem, ampere's law) while solving problems in magnetic fields

5 .Develop field equations from understanding Maxwell's equations in different forms (Point, Integral form).

6. Extend the knowledge of basic properties of transmission lines to analyze electromagnetic wave propagation in generic transmission line geometries. And Solve examples based on Smith chart

Title of the Course: Analog & Digital CommunicationLTP									Credit				
Course Code: UETC0404 04 - 04									04				
Course Pre-Requisite: Electronic devices & circuits, signals & system.													
Course Description: Course deals with understanding the principles of Analog and Digital													
Communication, study of different types of Noise in communication system .It describes the													
fundamentals of baseband transmission, modulation techniques.													
Course Objectives:													
1 Describe & demonstrate different types of analog demodulation techniques.													
2. Desc	ribe Co	onversio	on of an	alog to	digital	signals							
3.Evalu	late per	forman	$\frac{ce of d1}{\cdot}$	gital m	odulatio	on met	no	ds	• ,•				
4. Desc	ribe the	e transm	11SS101 a	and rece	ption in	digital		nmun	ication	system.			
5. Desc	Tibe var	rious ty	pes of I	NOISE II	1 comm	unicati	lor	i syste	ems.				
Course	Learni	ng Outc	comes:	of the		. 1		Dla	· ···· '~ T)
CO	Alter	t should	d be ob	of the	course	lne		BIO	$\frac{\text{om s } 1}{\text{ol}}$	axonom	y (Co	Dece) vinton
<u>CO1</u>	Defin	a diffor	u be ab		ico ond	thain		Leve	el mitirra()	Vnovulo	daa)	Desci	
COI	Denne		ent type	5 01 110	ise and	then		Cog	muve(KIIOWIE	ige)	Denn	e
~ ~ ~ ~	classif	ication.						~					
CO2	Explai	in diffei	rent mo	dulatio	n schen	nes.		Cog	nitive	• 、		Expla	in
	F 1	1:00		1 1				(Coi	mprehe	nsion)		F 1	
CO3	3 Explain different Demodulation schemes. Cognitive Explain								.1 n				
<u> </u>	TLala	- 4 1 - 41	1 1	1	•	•	1	(Col	mprene	nsion)		TL. J.	
C04	Under	stand tr	ie baset	band tra	insmiss	ion and	1	Cog	nitive			Unde	rstand
	recept	10n.											
CO-PC	Mappi	ng:	1				-			1 1			
CO	1	2	3	4	5	6	7	7	8	9	10	11	12
CO1	-	3	3	-	2	-	-	•	-	-	-	1	1
CO2	-	3	3	-	2	-	-		-	-	-	3	1
<u>CO3</u>	-	3	3	-	2	-	-	•	-	-	-	3	-
<u>CO4</u>	-	3	3	-	2	-	-		-	-	-	3	-
Assess	ments :		_										
Two	r Asses	ssment:	Somo	stor Ev	hustion		\mathbf{O}	no M	id Som	ostor Ex	zomin	ation (MCE)
and one	End S	nus or n emester	r Evami	ination	(ESE) I	i (ISE), aving	, U 20	$\frac{100}{100}$	10 Sell	50% w	ainin	respe	NGE) stively
	sment	cilicatei		mation			20 arl	70, J	<i>J /0 and</i>	1 J070 W	eignis	respec	
ISE 1	sincin					10	a11	1.5					
MSE						30	,)						
ISE 2						10)						
ESE						50)						
ISE 1 a	nd ISE	2 are b	ased on	assion	ment/de	eclared	te	st/aui	iz/semi	nar/Gro	un Di	scussic	ons etc
MSE: A	Assessn	nent is h	based on	n 50% o	of cours	se conte	ent	t (Noi	mally	first thre	e mo	dules)	ns etc.
ESE: A	ssessm	ent is b	ased on	100%	course	conten	t w	vith60)-70%	weighta	ge for	course	e content
(norma	lly last	three m	odules)) covere	ed after	MSE.				0	5		
Course	e Conte	ents:	/										
Unit 1	Am	plitude	Modu	lation a	& Dem	odulat	ioı	1:					
Introdu	ction to	- Analog	g Comr	nunicat	ion Sys	tem Tł	ne	Elect	romagi	netic &	Optica	ıl	
Spectru	im and	its usag	e; Radi	o spect	rum and	d frequ	en	cy all	ocation	n. Eleme	ents of	f	08Hrs.
commu	nicatio	n syster	ns, Nee	d for m	odulati	on, An	npl	litude	Modu	lation p	rincipl	les,	
AM en	velope,	frequer	ncy spee	ctrum &	έ ВW, <u></u>	phase r	ep	resen	tation o	of AM w	vave, A	AM	

modulating circuits: Low level AM modulation, medium power AM modulation,	
AM transmitters: Block of low level DSBFC, High level DSBFC, SSB	
suppression techniques. TRF and Super heterodyne receiver. Technical	
specification of AM broadcasting.	
Unit 2: Angle Modulation:	
Introduction to frequency and phase modulation. Mathematical representation of	
F.M. Frequency spectrum of F.M. wave., Generation of F.M. methods.	08Hrs.
Types of FM Receivers. Case study of AM/ FM relay station.	
Unit 3:Noise:	0611
Noise sources and types.	06 Hrs.
Unit 4: Digital transmission of analog signals:	
Introduction, Shannon's theorem of information, Sampling theorem ,Study of Pulse	00.11
Code Modulation- Uniform & Non uniform quantization, PAM, DPCM, Delta	08 Hrs.
Modulation, ADM.	
Unit 5: Baseband transmission & reception:	
Line codes: Unipolar, Bipolar, NRZ, RZ, RZ-AMI, Manchester	
Baseband pulse Shaping, M-ary Signaling, ISI, eye diagram, scrambler,	08 Hrs.
Unscramble. Optimum Receivers-Matched Filters, Correlation receivers	
Unit 6: Baseband modulation techniques:	
ASK, FSK, PSK, DPSK, QPSK, & QAM. Coherent, Non- Coherent	
Detection. Constellation diagram, comparison of modulation techniques based on	07 Hrs.
Baud rate, BER, Power Spectral density.	
Textbooks:	
1) George Kennedy, "Electronic Communications", McGraw Hill Kennedy	
2) Wayne Tomasi 'Electronics Communication System' -Fundamentals through Adv	anced
Vth Edition- Pearson Education.	
3) Analog and Digital communication – J S Chitode Technical Publications, 2009	
References:	
1) B.P. Lathi, "Analog and Digital Communication", OXFORD University press.	
2) Simon Haykin, "An introduction to analog & digital communications", John Wile	y & Sons
3) R P Singh, S D Sapre 'Communication System-Analog & Digital' IInd Edition –	Tata Mc
Graw Hill Publication.	
4) Louis E. Frenzel, "Principals of electronic communication system", III rd Ed., TM	H Pub.
Unit wise Measurable students Learning Outcomes:	
After the completion of the course the student should beable to	
1) Describe & demonstrate different types of AM Transmitters.	
2) Describe & demonstrate different types of AM Receivers.	
3) Describe & demonstrate different types of FM Transmitters.	
4) Describe & demonstrate different types of FM Receivers.	
5) Discuss various types of Noises in Communication System.	
6) Identify different sections of Pulse Modulation techniques.	
7) Describe & demonstrate different types of digital modulation and demodulation	
tashniquas 8) Describe different beschand transmission & resention systems	

Course Code: UETC0405Data structuresDIICCourse Pre-Requisite: Basics of C and C++ programming language											
Course Pre-Requisite: Basics of C and C++ programming language	$\frac{1000}{03}$										
	Course Pre-Requisite: Basics of C and C++ programming language										
Course Description:											
Explores array, stacks, queues, pointer, linked lists, graphs, trees and there algorithms											
including sorting, searching, iterating over data structures and recursion											
Course Objectives:											
1. To use & manipulate several core data structures: arrays, linked lists, stacks and queues.											
2. To Understand design and implementation of basic data structures and algorithms.											
3. To use various data structures effectively in different applications											
4. To learn the theory of trees and graphs.5.											
Course Learning Outcomes:											
CO After the completion of the course the student Bloom's Taxonomy	After the completion of the course the studentBloom's Taxonomy										
should be able to level Descrip	tor										
CO1Identify Linear and Non Linear data structures.CognitiveIdentify											
CO2Apply appropriate algorithm to perform operationsCognitiveApply											
on Linear and Non Linear data Structures.											
CO3 Demonstrate the algorithms of data Structure using Psychomotor Demonst	rate										
CO4 Analyze complexity issues of algorithms. Cognitive Analyze											
CO5 Select appropriate data structure to organize digital Cognitive Select											
data.											
CO-PO Mapping:											
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11	12										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 - - - - -	<u>12</u> -										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 -	<u>-</u> -										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 - - - - - CO2 2 3 2 - 3 3 - - - - CO3 2 3 2 - 3 3 - - - -	<u>12</u> - - -										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 -	<u>12</u> - - - -										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 - - - - - CO2 2 3 2 - 3 3 - - - - CO2 2 3 2 - 3 3 - - - - - CO3 2 3 2 - 3 3 - - - - - CO4 2 3 2 - 3 3 - - - - - CO4 2 3 2 - 3 3 - - - - -	<u>12</u> - - - - -										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 -	<u>-</u> - - - - - -										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 -	<u>12</u> - - - - - - -										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 - - - - - CO2 2 3 2 - 3 3 - <td><u>12</u> - - - - - -</td>	<u>12</u> - - - - - -										
CO-PO Mapping: CO 1 2 3 4 5 6 7 8 9 10 11 CO1 2 3 2 - 3 3 -	12 - - - - - - - - - -										
CO-PO Mapping: $\hline CO$ 1 2 3 4 5 6 7 8 9 10 11 $CO1$ 2 3 2 - 3 3 -<	12 - - - - - - - - E) ≿ly.										
CO-PO Mapping: $\hline CO$ 1 2 3 4 5 6 7 8 9 10 11 $\hline CO1$ 2 3 2 - 3 3 -	12 - - - - - - - E) 21y.										

ISE 2 ESE

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content

10

50

(normally last three modules) covered after MSE.

Course Contents:

Unit 1:--- Introduction & Overview:

Basic Terminology, Introduction of Linear and Non-linear data Structures,

Characteristics of an algorithm, Time and Space Complexity, Big 'O' and Ω ' notation, best, average and worst cases with example.					
Unit 2: Arrays & Pointers: Introduction of linear arrays: representation of linear array in memory, traversing linear arrays, inserting & deleting. Sorting: bubble sort & quick sort. Searching: linear search & binary search. Multidimensional arrays: matrices and sparse matrices. Pointers: pointer arrays.	07 Hrs.				
Unit 3: Linked Lists: Introduction, linked lists & its representation in memory, traversing & searching in a linked list, Garbage collection, insertion & deletion of nodes in linked list, header linked list, two-way lists, circular linked list.	06 Hrs.				
Unit 4: Stacks & Queues: Introduction to stacks, stack as an Abstract Data type, representation through Arrays & linked lists , Applications of stacks , stacks & recursion, Queue as an abstract data type representation, circular, double ended, priority queues	06 Hrs.				
Unit 5: Trees: Binary Tree: Introduction, Basic terminology, representations through arrays & linked lists, traversal, reconstruction, applications & threaded binary trees. Advanced trees: AVL trees, operation. Multi-way trees: m-way search trees, B trees, operations. Heaps: construction, operation & application	08 Hrs.				
Unit 6: Graphs: Introduction, Graph theory terminology, sequential representation of graphs: Adjacency Matrix, Path matrix, Warshall's Algorithm, Shortest path Algorithm, linked representation of graphs, operations. Traversing, Posets, Topological sorting.	06 Hrs.				
Textbooks: 1. Seymour Lipschautz, "Data Structures", Tata McGraw Hill, 2002 2. ISRD group, Data structures using C, Tata McGraw Hill, 2006					
References: 1] Y. Langsam, M. Augenstin and A. Tannenbaum, "Data Structures using C and C++", Pearson Education Asia, 2nd Edition, 2002, ISBN-81-7808-729-4. 2] Ellis Horowitz, S. Sahni, D. Mehta "Fundamentals of Data Structures in C++", Galgotia Book Source, New Delhi 1995 ISBN 16782928					
 Unit wise Measurable students Learning Outcomes: Identify Linear and Non Linear data structures and analyze basic complexity algorithms Perform deferent operations on Linear data Structures. Understand and perform operations on deferent types of link lists. Use stack & queue in deferent applications. Study different types of trees. Perform deferent operations on graphs. 	issues of				

Title of the Course: Enhancing Soft skills and Personality	L	Т	Р	Credit					
Development (Audit Course-II) Course Code:UETC0461	02			-					
Comment Provide Commentation Chills Comments the Chills Departies									

Course Pre-Requisite: Communication Skills, Communication Skills-Practice.

Course Description: The course aims to cause a basic awareness about the significance of soft skills in professional and inter-personal communications and facilitate an all-round development of personality. Hard or technical skills help securing a basic position in one's life and career. But only soft skills can ensure a person retain it, climb further, reach a pinnacle, achieve excellence, and derive fulfillment and supreme joy. Soft skills comprise pleasant and appealing personality traits as self-confidence, positive attitude, emotional intelligence, social grace, flexibility, friendliness and effective communication skills.

Course Objectives: The course aims to:

- 1. To develop inter personal skills and be an effective goal oriented team player.
- 2. To develop professionals with idealistic, practical and moral values.
- 3. To develop communication and problem solving skills.
- 4. To re-engineer attitude and understand its influence on behavior

CO	After the completion of the course the student Bloom's Cognitive											
	should be able to								lev	Des	criptor	
CO1	To deve	elop the	m to pre	sent the	emselve	S		Ap	plicat	ion	Appl	у
	confidently in job interviews											
CO2	To exte	To extend the ability of critical thinking while Comprehension Dem										
	addressing the issues at any situation											
CO3	To prep	are ther	n with s	uitable	languag	ge and		Syı	nthesi	S	Desig	gn /
	speech	patterns	in a wo	rkplace								
CO4	To acqu	ire tean	n skill b	y worki	ng in g	roup		Kn	owled	lge	Desig	gn
	activitie	es										
CO-PC	Mappi	ng:										
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	3	3	3	2						
~~~				-								
CO2	3	1	3	3	3	2						
CO3	2	2	3	2	3	2						
0.05	2	2	5	2	5	2						
CO4	2	2	3	3	3	2						
Unit 1:												4Hrs.
Self-A	ssessmer	nt; Iden	tifying	Strengt	h & Li	imitati	ons; I	Habits	, Wi	ll-Powe	r and	
Drives;	Develop	ping Se	lf-Estee	m and	Buildin	ig Sel	f-Conf	fidenc	e, Sig	gnifican	ice of	
Self-Di	scipline											
Unit 2:		_			. –							4 Hrs.
Mind-S	Set: Grov	wth and	Fixed; V	Values a	and Bel	iefs						
Unit 3:					~				~ .	~ .		5 Hrs.
Motiva	tion and	Achiev	ing Exc	ellence	Self-A	ctualis	ation 1	Need;	Goal	Setting	, Life	
and Car	eer Plan	ning; Co	onstruct	ive Thi	nking							
Unit 4:	• ,•		1 1 1	1 .	1.	1	~		1			5 Hrs.
Commu	inicating	Clear	ly: Un	derstan	ding a	and (	Jverco	ming	bar	riers A	Active	

Listening; Persuasive Speaking and Presentation Skills									
Unit 5:	4 Hrs.								
Conducting Meetings, Writing Minutes, Sending Memos and									
Notices;Netiquette:Effective E-mail Communication; Telephone Etiquette									
Unit6:	4 Hrs.								
Essential and Vocational skills:									
Survival strategies, Managing time, Managing stress, Work-life balance, Applying									
soft-skills to workplace.									
Textbooks:									
1. SOFT SKILLS, 2015, Career Development Centre, Green Pearl Pul	olications.								
Communication Skills by Menasha Raman and Sangeeta Sharma, Oxford U	niversity								
Press (OUP), 2013.	•								
2. Business Communication by S. Kalia and S. Agarwal, Wiley, 2015.									
3. An Introduction to Professional English and Soft Skills by Das et al, Cambrid	dge								
University Press, 2012.									
References:									
1. Dorch, Patricia. What Are Soft Skills? New York: Execu Dress Publisher, 2	)13								
2. Kamin, Maxine. Soft Skills Revolution: A Guide for Connecting with Co	mpassion								
for Trainers, Teams, and Leaders. Washington, DC: Pfeiffer & Company, 20	)13.								
3. Klaus, Peggy, Jane Rohman & Molly Hamaker. The Hard Truth a	out Soft								
Skills. London: HarperCollinsE-books, 2007.									
4. Petes S. J., Francis. Soft Skills and Professional Communication. New D	elhi: Tata								
McGraw-HillEducation.2011.									

 Stein, Steven J. & Howard E. Book. The EQ Edge: Emotional Intelligence and Your Success. Canada: Wiley & Sons, 2006.

Title of the Course: Analog Circuits – II LabLTPCredit												
Course Code: UETC0431											- 02	01
Course Pre-Requisite: Analog Circuits - I												
Course	Course Description: This course has been designed to introduce students with construction,											
theory and characteristics of various electronics devices. Also this course will lay strong												
fundam	fundamental base of discrete electronics and to develop capacity to analyze, interpret and											
design	design different electronics circuits.											
Course	o Objec	ctives :										
1.	To exp	p <b>lain</b> th	ne worl	king of	electro	onic cir	cuits li	ke am	plifiers	(volta	age and	current),
	power	amplif	iers, fe	edback	ampli	fiers, w	vave sł	naping	and vo	ltage	regulat	ors using
	discret	e comp	onents	and IC								
2.	To ill	ustrate	the 1	nethod	s of c	lesignir	ng the	elect	ronic ci	ircuits	using	discrete
	compo	nents.										
3.	To exp	<b>plain</b> th	ne prac	tical wa	ays of	measu	ring A	C and	DC pa	ramet	ers of	electronic
	circuits	s like a	amplifi	ers, po	wer an	nplifier	s, feed	back a	amplifie	rs, wa	ave sha	ping and
	voltage	e regula	tors for	r their p	perform	ance ar	nalysis.					
Course	Learn	ning Ou	itcome	s:								
CO	After	the c	omplet	ion of	the c	ourse 1	the stu	Ident	Bloom	's Tay	konomy	r
	shoul	ld be al	ble to						level			
CO	Demo	onstrat	e the	workir	ng of	electro	nic ci	rcuits	Cognit	ive	Under	standi
1	(amp]	lifiers,	power	amplif	iers, fe	edback	ampli	fiers,			ng	
	wave	shapir	ng and	voltag	e regu	lators)	built	using				
	discre	ete com	ponent	s and IO	2			U				
CO	Test	and and	nalyze	the pe	erforma	nce of	ampli	fiers,	Cognit	ive	Analy	zing
2	oscill	ators,	wave s	shaping	, and	voltage	e regu	lators	U		5	U
	built	using d	iscrete	compoi	nents a	nd IC	U					
CO	Evalı	iate the	e perfoi	mance	of volt	age, cu	rrent, p	ower	Psycho	mot	Evalu	ating
3	and fe	eedback	x ampli	fiers an	d volta	ge regu	lators.		or			U
CO	Desig	<b>n</b> th	e ele	ectronic	circ	uits	for	given	Cognitive		Creating	
4	speci	, fication	s usin	g IC a	and di	screte	compo	nents	0			0
	such	as BJT.		0			1					
CO-PC	) Mapi	oing:									1	
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO	3	-	-	-	-	-	-	-	-	-	-	-
1												
CO	3	_	_	_	-	-	_	-	_	-	3	_
2	-											
CO	_	_	3	2	_	_	_	-	_	-	_	_
3			-									
CO	-	_	3	2	_	_	_	-	_	_	-	_
4			-	_								
ĊO	_			_	_	2	_	-	_	_	_	
5						-						
Δ	nents	•				I	I	1		I	1	
Teache	r Acce	ssment	•									
One co	mnone	nt of In	Seme	ster Ev	aluatio	n (ISF)	and or	ne End	Semest	er Ex	aminati	on (ESE)
having	50% a	nd $50\%$	weigh	ts respe	ectively				Semest		ammut	
1	Assessment Marks											

25

ISE

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc. ESE: Assessment is based on oral examination
Discussion/Internal oral etc. ESE: Assessment is based on oral examination
ESE: Assessment is based on oral examination
LoL. Assessment is bused on oral examination
Course Contents:
Experiment No. 1: 2 Hrs
Aim and Objectives: Study of Frequency response of Common Source (CS)
amplifier.
Outcomes: Student will be able to understand Frequency response of Common
Source (CS) amplifier
<b>Theoretical Background:</b> Frequency response of Common Source (CS) amplifier
<b>Experimentation:</b> ObtainFrequency response of Common Source (CS) amplifier
<b>Results and Discussions:</b> Obtain the bandwidth of CS amplifier
Conclusion:
Experiment No. 2: 2 Hrs
Aim and Objectives: Design and study of single stage RC coupled amplifier.
<b>Outcomes:</b> Student will be able to design single stage RC coupled amplifier and
understand the frequency response of amplifier.
<b>Theoretical Background:</b> single stage RC coupled amplifier.
<b>Experimentation:</b> Design and obtain Frequency response of single stage RC
coupled amplifier.
<b>Results and Discussions:</b> Obtain the bandwidth of RC coupled amplifier
Conclusion:
Experiment No. 3: 2 Hrs
Aim and Objectives: Study of square wave response of RC coupled amplifier &
calculation of Sag & rise time $(t_r)$ .
<b>Outcomes:</b> Student will be able to understand square wave response of RC coupled
amplifier
<b>Theoretical Background:</b> square wave response of RC coupled amplifier
<b>Experimentation:</b> Obtain square wave response of amplifier at low and high
frequency
<b>Results and Discussions:</b> Compare the theoretical and practical values
Conclusion:
Experiment No. 4: 2 Hrs
Aim and Objectives: Design & study of Frequency response of two stage RC
coupled amplifiers.
<b>Outcomes:</b> Student will be able to design two stage RC coupled amplifier and
understand the frequency response of amplifier.
<b>Theoretical Background:</b> RC coupled Multistage amplifier
<b>Experimentation:</b> Design and obtain Frequency response of two stage RC coupled
amplifier.
<b>Results and Discussions:</b> Obtain the bandwidth of RC coupled amplifier
Conclusion:
Experiment No. 5: 2 Hrs
Aim and Objectives: Design & study of Frequency response of two stage direct
coupled amplifiers.
<b>Outcomes:</b> Student will be able to design two stage direct coupled amplifier and
understand frequency response of amplifier.
<b>Theoretical Background:</b> Two stage direct coupled amplifiers
<b>Experimentation:</b> Design and obtain Frequency response of two stage direct

coupled amplifier	
Results and Discussions: Obtain the bandwidth of amplifier and effect of direct	
coupling	
Conclusion:	
Experiment No. 6:	2 Hrs
Aim and Objectives: Study of power amplifiers	
<b>Outcomes:</b> Student will be able to understand various power amplifiers	
Theoretical Background: Power amplifiers	
<b>Experimentation:</b> Analyze the performance of various power amplifiers	
<b>Results and Discussions:</b> Comparison between various power amplifiers	
Conclusion:	
Experiment No. 7:	2 Hrs
Aim and Objectives: Design and analysis of current series feedback amplifiers	21115
<b>Outcomes:</b> Student will be able to understand affect feedback on amplifier	
Theoretical Background: Current series feedback amplifiers	
<b>Emerimentations</b> Observe the performance of amplifier with and without feedback	
<b>Experimentation:</b> Observe the performance of amplifier with and without feedback	
Results and Discussions: Obtain the bandwidth with and without feedback	
Conclusion:	0.11
Experiment No. 8:	2 Hrs
Aim and Objectives: a Study of RC low pass filter as an integrator	
b. Study of frequency response of low pass filter	
Outcomes: Student will be able to understand RC low pass filter as an integrator	
and its frequency response	
Theoretical Background: RC low pass filter	
Experimentation: Obtain frequency response of low pass filter and integrator	
condition	
Results and Discussions: Compare lower cutoff frequency between practical and	
theoretical.	
Conclusion:	
Experiment No. 9:	2 Hrs
Aim and Objectives: a. Study of RC high pass filter as an differentiator	
b. Study of frequency response of high pass filter	
Outcomes: Student will be able to understand RC high pass filter as an	
differentiator and its frequency response	
<b>Theoretical Background:</b> RC high pass filter	
<b>Experimentation:</b> Obtain frequency response of high pass filter and differentiator	
condition	
<b>Results and Discussions:</b> Compare upper cutoff frequency between practical and	
theoretical	
Conclusion:	
Experiment No. 10:	2 Hrs
Aim and Objectives: Study of different clipper circuits	21115
<b>Outcomes:</b> Student will be able to understand operation of various clipper circuits	
Theoretical Background: Clipper circuits	
<b>Experimentation:</b> Obtain input output transfer characteristics of different clippers	
eirouit	
Degulta and Discussions:	
Conduction:	
Conclusion:	<u> </u>
Experiment No. 11:	2 Hrs
Aim and Objectives: Study of different clamper circuits: positive, negative & bias	

<b>Outcomes:</b> Student will be able to understand operation of various clamper circuits	
<b>Theoretical Background:</b> Clamper circuits	
<b>Experimentation:</b> Obtain input output transfer characteristics of different clamper	
circuit	
Results and Discussions:	
Conclusion:	
Experiment No. 12:	2 Hrs
Aim and Objectives: Design of IC Voltage Regulator using LM317 or LM723	
Outcomes: Student will be able to design Voltage Regulator using LM317 or	
LM723	
Theoretical Background: Voltage Regulator using LM317 or LM723	
<b>Experimentation:</b> Obtain line regulation and load regulation of IC voltage regulator	
Results and Discussions: Comparison between Practical and Theatrical analysis	
results	
Conclusion:	
Textbooks:	
1. J. Millman&C.Halkias -'Electronic devices & circuits'-II nd Edition- Tata McGra	aw Hill
Publication	
2. Allen Mottershed —'Electronic devices & circuits'-Prentice- Hall India	
3. N.C. Goyal& R.K. Khetan-' A Monograph on Electronics Design Principles'-V th I	Edition-
Khanna Publishers	
4. J. Milman& H. Taub ' Pulse Digital & Switching Waveforms' - IInd Edition	n- Tata
McGraw Hill Publication	
References:	
1. David A. Bell —'Electronic devices & circuits'- IV th Edition- Prentice- Hall India	
2. J Millman& A. Grabel-' Microelectronics'- IInd Edition- McGraw Hill Intern	national
Editions	
3 National Semiconductor Data Manual.	
4 M.S. Roden, G.L. Carpenter ' Electronic Design- From Concept to reality'- IV th I	Edition-
Shroff publisher & Distributors	
Measurable Students Learning Outcomes :	
1. Compare and contrast the amplifier circuits implemented using BJT, JFI	ET and
MOSFET.	
2. Analyze the performance of Feedback and Power amplifiers.	

# Course Name: Analog Circuit II Lab Course Code: UETC0431 For example:-Problem Statement:

The industrialization of the world, increase in population, slow paced city development and mismanagement of the available parking space has resulted in parking related problems. There is a dire need for a secure, intelligent, efficient and reliable system which can be used for searching the unoccupied parking facility, guidance towards the parking facility, negotiation of the parking fee, along with the proper management of the parking facility Could you come up with a solution that can help them?

# Abstract of the Problem:

The problem defined above is with the intention that the students should be able to develop intelligent parking services system.

# Activities/Steps/Milestones with duration to solve the problem:

- Milestone 1 : (1 Week)
  - Problem discussion and Team formation
  - Rubrics Plan
- Milestone 2 : (2 Week)
  - Critical Thinking
  - Project Specifications
- Milestone 3 : (1 Week)
  - Circuit diagram
  - Components Survey
- Milestone 4 : (1 Week)
  - In semester examination for 05 Marks (Case Study and Presentation)
- Milestone 5 : (1 Week)
  - Circuit Mounting and Testing on Breadboard
- Milestone 6 : (2 Week)
  - Circuit Mounting, Soldering and Testing on General Purpose PCB.
- Milestone 7 : (1 Week)
  - o Results
  - Discussion Project Costing and Simulations (1 Week)
- Milestone 8 : (1 Week)
  - o Reports
  - $\circ$  Presentation
- Milestone 9 : (1 Week)
  - In semester examination for 7.5 Marks (Reports, Product Validation and Question Answering)
- Assessment Scheme:

Type of Assessment	Marks
In-Semester Examination 1	5.0 (Case Study & Presentation)
In-Semester Examination 2	7.5(Report, Product Validation and Question Answering)

# • Evaluation Scheme for 25 Marks

Heads	Marks
Case Study	2.5
Presentation	2.5
Report	2.5
Product Validation	2.5
Question Answering	2.5

Title of	the Course: Linear Integrated Circuits Lab	L	Т	Р	Credit					
Course	Code:UETC0432	-	-	02	01					
Course	Pre-Requisite: Transistor as an Amplifier	•								
Course	Course Description:									
The co	urse aims to provide knowledge of operational amplifier,	some spe	cial p	urpos	e ICs					
like IC	like IC 555 & IC565(PLL) and their applications.									
Course	Objectives:									
This co	urse aims to									
1. Prov	ide knowledge of op-amp & its electrical parameters									
2. Prov	ide knowledge of op-amp configurations & frequency res	ponse								
3. Stud	y linear and non linear applications of op-amp									
4. Prov	ide basic knowledge of special purpose ICs like IC555 an	d IC 565								
Course	Learning Outcomes:									
CO	After the completion of the course the student	Bloom's	level	De	scriptor					
	should be able to									
<b>CO1</b>	Discuss the op-amp's basic construction,	Cognitive	e	Re	call					
	characteristics, parameters, various configurations of	-								

	characteristics, parameters, various configurations of		
	op-amp		
CO2	Evaluate different parameters of op-amp viz Slew	Cognitive	Evaluate
	rate, CMRR, frequency response		
CO3	Design linear and non-linear circuits like active	Cognitive	Create
	filters, signal generators using op-amp.		
<b>CO4</b>	Design the application of timer IC 555 for	Cognitive	Create
	multivibrators	_	
<b>CO5</b>	To test the simulation of op-amp circuits	Cognitive	Analyze
		-	

# **CO-PO Mapping:**

CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	3	3	3	2	-	-	-	-	-	-
CO2	3	1	3	3	3	2	-	-	-	-	-	-
CO3	2	2	3	2	3	2	-	-	-	-	-	-
CO4	2	2	3	3	3	2	-	-	-	-	-	-
CO5	1	2	3	3	3	3	-	-	-	-	-	-

#### Assessments :

#### **Teacher Assessment:**

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	25
ESE-POE	50
ISE are based on practical performed/ Ouiz/ M	ini-Project assigned/ Presentation/ Group

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination	
Course Contents:	
Experiment No. 1	2 Hrs
Aim and Objectives: Study of datasheets of I M7/1 I E356 CA31/0 OD177	21115.
Ann and Objectives. Study of datasheets of Elvi/41, Er550, CA5140, Of 1//	
Outcomes: Students will be able to define various electrical parameters of op-amp	
Theoretical Background: Definition of electrical parameters	
<b>Experimentation:</b> Study datasheets of various op-amp ICs to study their electrical	
parameters	
<b>Results and Discussions:</b> Comparison of electrical parameters of op-amp ICs	
Experiment No. 2:	2 Hrs.
Aim and Objectives: Measure op-amp parameters & compare with the standard	
specifications:	
(a) Measure input bias current, input offset current and input offset voltage.	
(b) Measure slew rate (LM/UA741C)	
(c) Measure CMRR	
(d) Compare the result with detechant of comparending On Amn	
(u) Compare the result with datasheet of corresponding Op Amp.	
Outcomes: Students will be able to evaluate various electrical parameters of op-	
amp	
<b>Theoretical Background:</b> Pin out of IC741 and Definition of electrical	
parameters	
<b>Experimentation:</b> Calculate various parameters of op-amp by following the	
design procedure	
<b>Results and Discussions:</b> Practical values of parameters	
<b>Conclusion:</b> op-amp parameters have been calculated and compared with their	
standard values. Calculated values are approximately same as that of the standard	
values	
Functional No. 2:	2 Urg
Aim and Objectives Design of investing non-investing annulifier & glot their	21115.
Aim and Objectives: Design of inverting, non-inverting amplifier & plot their	
trequency response	
Outcomes: students will be able to understand the concept of inverting and non-	
inverting configuration of op-amp	
Theoretical Background: Inverting and non-inverting configuration of op-amp	
<b>Experimentation:</b> Apply DC and AC voltage to the Inverting and non-inverting	
configuration of op-amp. Measure the o/p voltage for i/p DC voltage. For AC	
voltage increase the $i/n$ frequency and note down the corresponding $o/n$ voltage	
<b>Desults and Discussions:</b> Prepare a table of calculated and observed o/p voltage.	
<b>Results and Discussions.</b> Frepare a table of calculated and observed 0/p voltage	
for DC 1/p voltage. Plot the frequency response curve for AC 1/p voltage.	
<b>Conclusion:</b> For inverting configuration of op-amp, i/p is inverted at the o/p and	
the amplitude of o/p is equal to the gain times the i/p. For non-inverting, there is	
no phase shift between i/p & o/p voltage.	
Experiment No. 4:	2 Hrs.
Aim and Objectives: Design of Summing, scaling, and averaging amplifier	
Outcomes: Students will be able design summing scaling and averaging amplifier	
using on-amp	
Theoretical Rockground: Derivation for the o/n voltage for Symming application	
and averaging appolition using inventing & non-inventing configuration	
and averaging amplifier using inverting & non-inverting configuration	
<b>Experimentation:</b> Design Summing, scaling, and averaging amplifier. Apply DC	

voltage to Summing, scaling, and averaging amplifier and measure the o/p voltage	
<b>Results and Discussions:</b> Measure o/p voltage and compare them with the	
theoretical values.	
<b>Conclusion:</b> Op-amp can be used as the summing, scaling and averaging	
amplifier. For summing amplifier, the o/p voltage is sum of the i/p voltages	
applied. In scaling amplifier, each i/p voltage is weighted by a different factor. In	
averaging amplifier, the o/p voltage is average of the i/p voltages applied.	
Experiment No. 5:	2 Hrs
<b>Aim and Objectives:</b> Design build and test precision half & full wave rectifier	2 1115.
<b>Outcomes:</b> Students will be able to analyze $\alpha/n$ waveforms of precision HWR &	
EWD	
Theoretical Packground: Operating principle of presiden UWD & EWD	
<b>Experimentation:</b> Construct singuits for precision LWD & EWD Apply AC	
<b>Experimentation:</b> Construct circuits for precision H wR & F wR. Apply AC	
signal of less than 0.7 v to the 1/p terminal of rectifier. Observe the 0/p waveforms	
<b>Results and Discussions:</b> Observe the 0/p waveforms and plot it on graph paper	
<b>Conclusion:</b> Precision rectifiers can rectify signals below 0.7V which is not	
possible with diode rectifier	
Experiment No. 6:	2 Hrs.
Aim and Objectives: Design, build and test Schmitt trigger	
Outcomes: Students will be able to explain operation of Schmitt trigger	
Theoretical Background: Operating principle of Schmitt trigger	
<b>Experimentation:</b> Design the Schmitt trigger for given specifications. Observe	
the i/p & o/p waveforms	
<b>Results and Discussions:</b> Determine upper & lower threshold voltage from	
observed waveforms and hysteresis loop.	
<b>Conclusion:</b> Schmitt trigger converts sinusoidal signal into square wave.	
Whenever i/p sinusoidal signal crosses upper & lower threshold voltage levels the	
o/p is switched from +Vsat to -Vsat & -Vsat to +Vsat respectively.	
Experiment No. 7:-	2 Hrs
Aim and Objectives: Design of Butterworth High Pass and Low Pass filters	
<b>Outcomes:</b> Students will be able to explain operation of Butterworth High Pass	
and Low Pass filters	
<b>Theoretical Background:</b> Operating principle of filters	
<b>Experimentation:</b> Design filter for given cut-off frequency and gain Apply AC	
signal to the $i/n$ of filter. Increase the $i/n$ frequency observe the amplitude of $0/n$	
signal for corresponding i/n frequency	
<b>Results and Discussions:</b> Plot the frequency response curve of Butterworth High	
Pass and I ow Pass filters	
<b>Conclusion:</b> For I PE filter the remains constant till cut-off frequency After	
reaching cut off frequency, the gain reduces at the rate of 20dB/dec. Thus I PE	
allows signals below cut off frequency while rejecting the signals above cut off	
frequency Signals below cut-on nequency while rejecting the signals above cut-on frequency Similarly for HDE the gain increases at the rate of 120dB/dec till out	
off frequency. Thereafter the gain increases at the face of +200D/dec thi cut-	
frequency. Thereafter the gain femalis constant. Thus HPF rejects low	
Frequencies and allows signals above cut-off frequency.	0.11
Experiment No. 8:-	2 Hrs
Aim and Objectives: Design, build and test square & triangular wave generator	
<b>Outcomes:</b> Students will be able to design waveform generator	
Ineoretical Background: Concept of oscillator	
<b>Experimentation:</b> Design square and triangular wave generator for given	
specification	

<b>Results and Discussions:</b> Observe the o/p waveforms. Note down frequency and	
amplitude of the o/p waveform	
<b>Conclusion:</b> Waveform generators are basically oscillators which generate square	
& triangular wave without applying any i/p signal	
Experiment No.9:-	2 Hrs
Aim and Objectives: Design of astable multivibrator using IC555	
<b>Outcomes:</b> Students will be able to explain operation of astable multivibrator	
using IC555	
<b>Theoretical Background:</b> Internal circuit of IC555 timer. Pin out of IC555.	
<b>Experimentation:</b> Design astable multivibrator using IC 555 timer to generate	
square wave of 50% duty cycle.	
<b>Results and Discussions:</b> Observe the o/p waveform. Calculate the duty cycle.	
<b>Conclusion:</b> IC 555 can be used to generate square wave of various duty cycle.	
Experiment No. 10:-	2 Hrs
Aim and Objectives: Design and implement Wien bridge oscillator using Op-	- 110
Amn	
<b>Outcomes:</b> Students will be able to design oscillator to generate sinusoidal signal	
<b>Theoretical Background</b> : Concept of oscillator	
<b>Experimentation:</b> Design and implement Wien bridge oscillator using On-Amp	
To generate sinusoidal signal of given frequency	
<b>Results and Discussions:</b> Observe the o/n	
<b>Conclusion:</b> On-amp can designed as an oscillator to generate sinusoidal signal of	
desired frequency	
Experiment No. 11:	2 Hrs
Aim and Objectives: Simulation of comparator	21115
Ann and Objectives. Simulation of comparator	
Outcomes. Students will be able to test the simulation of op-amp circuits	
Theoretical Background: Operation of comparator	
<b>Experimentation:</b> Create a project in pspice to simulate comparator circuit.	
<b>Results and Discussions:</b> Observe the i/p & o/p waveform	
<b>Conclusion:</b> Students will be able to analyze o/p of comparator using simulation	
Experiment No. 12:-	2 Hrs
Aim and Objectives: Simulation of band pass & band reject filter	
Outcomes: Students will be able to test the simulation of op-amp circuits	
Theoretical Background: Operation of hand pass & hand reject filter	
<b>Experimentation:</b> Create a project in parice to simulate hand pass & band reject	
filter circuit	
<b>Posults and Discussions:</b> Observe the $i/n \& o/n$ waveform	
<b>Conclusion:</b> Students will be able to analyze $o/p$ of comparator using simulation	
Taythacks:	
1) Ramakant A Gaikwad "On Amns and Linear Integrated Circuits" Pearson Educ	ation
second and latest edition	ation
2) D Roy Choudhary Shail Jain "Linear Integrated Circuits" New Age Int	
2) D.Roy Choudhary, Shah Jahi, "Linear Integrated Circuits", New Age Int	
1) Robert Coughlin Fredric Driscoll "Onerational Amplifices and Lincor Integrated	
Circuits" Sixth edition DE 2006 (Ch 6)	
2) David Ball "Operational Amplifiant and Lincon ICa" Third ad Oxford University	Dross
2) David Den, Operational Amplifiers and Linear ICs, Third ed, Oxford University 2) D. Somenathan Noir, "Linear Integrated Circuits, Analysis, Design & Amiliatian	F1088
Wilow India	шъ,
Whey muta.	
(4) Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circu	its", Tata

McGraw Hill., Third Edition

Experiment wise Measurable students Learning Outcomes:

1) Students will be able to explain various electrical parameters of op-amp

2) Students will be able to calculate various electrical parameters of op-amp

3) Students will be able to design inverting and non-inverting amplifier using op-amp

4) Students will be able to design summing, scaling and averaging amplifier using op-amp

5) Students will be able to analyze o/p waveform of precision HWR & FWR

6) Students will be able to analyze o/p waveform of Schmitt trigger

7) Students will be able to design butterworth LPF & HPF and analyze their operation from the frequency response

8) Students will be able to design square and triangular waveform generator.

9) Students will be able to design IC555 timer as astable multivibrator to generate square wave of various duty cycles

10) Students will be able to design wien bridge oscillator using op-amp to generate sinusoidal signal.

11) Students will be able to simulate comparator circuit in PSPICE

12) Students will be able to simulate band pass and band reject filter circuits in PSPICE

Title of	Title of the Course: Analog Communication & DigitalLTP										<b>P</b>	Credit
Communication Lab Course Code: UETC0433										-	02	01
<b>Course Pre-Requisite:</b> Basic knowledge of working of diode, transistor, and amplifiers.												
<b>Course Description:</b> Course deals with different types of AM and FM transmitter and												
receivers with their working. Also course deals with digital modulation and demodulation												
types.												
Course Objectives:												
1. Describe & demonstrate different types of modulation techniques.												
2. Describe & demonstrate different types of demodulation techniques.												
3. Live		1stratio	on at A	IK stati	on of A	WI OF F	MI trans	Smissi	on.		.1.4	
4. Desci		demon	istrate	amerei	n types	of dase	edand u	ransim	ssion and	mod	ulation	
Course	Iques.	ing O	ut a a ma									
Course	Afton	the co	mplati	es:	he cou	ngo tho	atudan	4	Dloom'	Toy	anomy	
CO	Alter	the co	mpieu		ne cou	rse the	studen	ι	bioon	s raxe	Deserie	ator
	silvui ahla f								level		Descrip	5101
C01	Evnla	in diffe	erent m	odulat	ion sch	emes			Cognitiv	Ve	Evolai	n
CO1	Expla	$\frac{111}{111}$	erent D	emodu	lation s	chemes	2		Cogniti	ve	Explai	n
CO2	In All	R visit	studer	nts actu	ally go	throug	s. h the liv	76	Cogniti	ve	Demor	stratio
0.05	demo	nstratic	n nroc	ress of t	transmi	tting ar	nd receiv	vino	Coginti	ve	n	istratio
	of sig	nal	n pro <b>c</b>	055 01	.runsiin	ung un		v mg			11	
<b>CO4</b>	Expla	in diffe	erent ty	mes of	baseba	nd trans	smissio	n and	Cogniti	ve	Explain	n
001	modu	lation t	echnia	ues.	ouseou	ila train	511105101	ii uiiu	coginti		Enplui	
CO-PO	Mapi	oing:										
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	3	3	-	3	-	-	-	-	-	3	-
CO2	-	3	3	-	3	-	-	-	-	-	3	-
CO3	-	3	3	-	3	-	-	-	-	-	3	-
CO4	-	1	1	-	2	-	-	-	-	-	3	-
Assessn	nents											
Teache	r Asse	ssmen	t:	. г	1		1	<b>F</b> 1	а ,	г	• ,•	
One cor	npone:	nt of In	Seme	ster Ev	aluatioi	n (ISE)	and one	e End	Semester	Exam	nination	(ESE)
	$\frac{50\%}{20}$	.nu 30%	o weig	nts resp	bectivei	.y.	Iorlea					
ASSESS							viaiks 05					
	$\frac{\mathbf{W}}{\mathbf{OE}}$						50					
ISE are	based	on nra	ctical r	erform	ed/ Ou	iz/ Min	i_Projec	t accid	med/ Pres	entat	ion/Gro	up
Discuss	ion/In	ternal (	oral etc		cu/ Qu	12/ 101111	I-I IOJCC	i assig		scinar		up
ESE: A	ssessm	ent is l	brar eu	on oral (	examin	ation						
Correct	Cant	mt c-										
Evnori-	COILE	Jo 1.										07 Ura
Lxperii	nent F	NU. I:	nracti	al imn	lamont	ation of	Ampli	tudo N	Indulation	n		02 HIS.
Objectiv	ves D	ent OII emonet	rate A	ai iiip M Mod	ulation	1011 UI	лири		iouulatio	.1.		
	$v \cup s$ . $D($	วทางแจเ	iau A									

Outcomes: Calculation of modulation index in different cases.	
Theoretical Background: Working of R.F. amplifiers, audio and power amplifier,	
balanced modulators.	
Experimentation:	
Results and Discussions: $m = Em/Ec$	
Conclusion:	
We observed that, ideal value of m=1.	
When m>1, we call it as over modulation.	
When m<1, we call it as under modulation.	
In AM, amplitude of the carrier signal is changed according to instantaneous	ļ
value of modulating signal.	
Experiment No. 2:	02 Hrs.
Aim: Experiment on practical implementation of calculation of modulation index	ļ
by using	ļ
a) AM signal and b)Trapezoidal Pattern	ļ
Objectives: Demonstrate AM modulation and Demodulation using Trapezoidal	ļ
pattern and AM spectrum.	ļ
Outcomes: Calculation of modulation index using trapezoidal pattern and AM	ļ
spectrum in different cases.	ļ
Theoretical Background: Working of R.F.amplifiers, audio and power amplifier,	ļ
balanced modulators.	
Experimentation:	ļ
Results and Discussions:	I
Using AM spectrum: m = (Vmax-Vmin) / (Vmax+Vmin)	i
Using trapezoidal pattern: $m = (A-B) / (A+B)$	
Conclusion:	
We observed that, ideal value of m=1.	
When $m>1$ , we call it as over modulation.	
When $m < 1$ , we call it as under modulation.	
In AM, amplitude of the carrier signal is changed according to instantaneous value	
of modulating signal.	
Experiment No. 3:	02 Hrs.
Aim : Experiment on practical implementation of Amplitude Demodulation.	
Objectives: Demonstrate AM Demodulation.	
Outcomes: Study how to extract original signal using AM diode detector.	
Theoretical Background: Working of diode, rectifier, filter and balanced	
modulators.	
Experimentation:	
Results and Discussions: To see how original signal is extracted from modulated	
signal.	
Conclusion:	
We observed that, amplitude of original signal is changes in proportion to change	
in modulating signal.	
Experiment No. 4:	02Hrs.
Aim: Experiment on practical implementation of Frequency Modulation and also	
find the modulation index.	
Objectives: Demonstrate FM Modulation.	
Outcomes: Calculation of modulation index using Varactor diode.	
Theoretical Background: Working of amplifiers.mixers, balanced	
man division dia da mantitian tiltan ivianizina at vianaatan dia da	

Experimentation:	
Results and Discussions: Modulation index = $(f2-f1) / fm$	
Conclusion:	
In FM, frequency of the carrier signal is changed according to instantaneous value	
of modulating signal.	
Experiment No. 5:	02 Hrs.
Aim: Experiment on practical implementation of Sampling and reconstruction and	
also observe aliasing effect by varying sampling frequency.	
Objectives: Demonstrate Sampling theorem.	
Outcomes: Observed aliasing effect and Nyquist criteria.	
Theoretical Background: Working of sample and hold circuit, filter.	
Experimentation:	
Results and Discussions: Nyquist criteria is satisfied to avoid aliasing.	
Nyquist criteria is fs>2*fm.	
Conclusion:	
Sampling theorem states that, it is possible to convert continuous signal into	
discrete signal and recovered back the original signal if the condition	
$fs > 2^*$ fm is satisfied otherwise aliasing means merging one frequency into	
another is occurred.	
Experiment No. 6:	
Aim: Experiment on practical implementation of PAM system.	
Objectives: Demonstrate generation and detection of PAM.	
Outcomes: Observed ideal, natural and flat-top PAM.	
Theoretical Background: Working of sample and hold circuit, filter, sampling	
theorem.	
Experimentation:	
Results and Discussions:	
To produce ideal sampling, convolution between baseband signal and pulse signal	
is used.	
To produce natural sampling, BJT or FET as a switch is used.	
To produce flat-top sampling, sample and hold (S/H) circuit is used.	
Conclusion:	
In this, by observing ideal, natural and flat-top sampling, we can write comparison	
between them.	
Experiment No. 7:	02Hrs.
Aim: Experiment on practical implementation of PAM system.	
Objectives: Demonstrate generation and detection of PWM.	
Outcomes: Observed PWM using comparator.	
Theoretical Background: Working of sampling theorem, comparator.	
Experimentation:	
Results and Discussions:	
To produce PWM output, comparator is used.	
Saw tooth wave and pulse, both are applied to comparator circuit to produce PWM	
output.	
Conclusion:	
In PWM, width of the carrier signal is changed according to instantaneous value of	
modulating signal.	
Experiment No. 8:	
Aim: Experiment on practical implementation of Pre-emphasis and De-emphasis.	02 Hrs

Objectives: Demonstrate working of LPF and HPF in FM.					
Outcomes: Observed that to artificially boost high frequency component, we use					
HPF at FM transmitter side and getting back signal to original value, we use LPF					
at FM receiver side.					
Theoretical Background: Working of LPF, HPF and use of Semi Log graph paper.					
Experimentation:					
Results and Discussions:					
To artificially boost high frequency component, we use HPF at FM transmitter					
side and getting back signal to original value, we use LPF at FM receiver side.					
Conclusion:					
Pre-emphasis and De-emphasis are used to improve signal to noise ratio(SNR).					
Experiment No. 9:					
Aim: Visit to Music Studio/ AIR/Doordarshan Kendra.					
Objectives: Demonstrate live working AM or FM system.					
Outcomes: To get live demonstration of working of all parts of AM or FM					
transmitter and recording studio.	02Hrs.				
Experimentation:					
Results and Discussions:					
To get all the technical details like height of antenna, carrier and modulating signal					
frequency, power, and geographical coverage area.					
Conclusion:					
Students are getting live demo. To enhance their knowledge.					
Experiment No. 10:					
Aim: Study of ASK transmitter and receiver.					
Experiment No. 11:	02Hrs.				
Aim: Study of FSK transmitter and receiver.					
Experiment No. 12:	02Hrs.				
Aim: Study of PSK transmitter and receiver.					
Experiment No. 13:	02Hrs.				
Aim: Study of QAM transmitter and receiver.					
Experiment No. 14:	02Hrs.				
Aim: Study of different Data formats.					
Any 10 practical's out of above 14.					
Also any 2 practical's based on Simulation. (Self study experiments)					
Textbooks:					
1) George Kennedy, "Electronic Communications", McGraw Hill Kennedy					
2) Wayne Tomasi 'Electronics Communication System' -Fundamentals through Adv	anced				
Vth Edition- Pearson Education.					
3) Analog and Digital communication – J S Chitode Technical Publications, 2009					
References:					
1) B.P. Lathi, "Analog and Digital Communication", OXFORD University press.					
2) Simon Haykin, "An introduction to analog & digital communications", John Wiley					
3) R P Singh, S D Sapre 'Communication System-Analog & Digital' IInd Edition –	Tata Mc				
Graw Hill Publication.					
4) Louis E. Frenzel, "Principals of electronic communication system", IIIrd Ed., TM	H Pub.				
Experiment wise Measurable students Learning Outcomes:					
1) Calculation of modulation index in different cases.					
2) Calculation of modulation index using trapezoidal pattern and AM spectrum in di	fferent				
,					

cases.

3) Study how to extract original signal using AM detector.

4) Calculation of modulation index using Varactor diode.

5) Observed aliasing effect and Nyquist criteria.

6) Observed ideal, natural and flat-top PAM .

7) Observed PWM using comparator.

8) Observed that to artificially boost high frequency component, we use HPF at FM transmitter side and getting back signal to original value, we use LPF at FM receiver side.

9) To get live demonstration of working of all parts of AM or FM transmitter, recording studio.

Title o	f the Cou	Title of the Course: Data Structures – Lab								P	C	'redit
Course Code:UETC0434									-	02		01
<b>Course Pre-Requisite:</b> Basics of C and C++ programming language												
Course Description:												
Explores linear & nonlinear data structures and algorithms including sorting, searching, iterating												
over data structures and recursion												
Course Objectives:												
1. Develop programming skills to design simple linear and non linear data structures.												
2. Strengthen the ability to identify and apply the suitable algorithm for the real world problem												
3. Gain knowledge in practical applications of data structures												
Course Learning Outcomes:												
		0										
	After t	he com	pletion	of the	course	the stu	dent sh	ould	В	loom's	Taxon	omy
CO	be		•						le	vel	Desc	criptor
	able to								10		205	Jinptoi
<b>CO1</b>	Develo	p linear	& non	linear d	lata stru	ictures			Cog	nitive	De	velop
CO2	Apply	various	searchi	ng and	sorting	algoritl	nms on l	linear	Cog	nitive	A	oply
	arrav.			0	0	0			- 0		1	
C03	Demon	strata th	o varia		entions c	n stack	r and au	0110	Cog	nitivo	Dom	onstrate
COJ	Demon	strate T		us oper			there a	cuc	Cog		Demo	mstrate
C04	Demon	strate I	ree & C	Jraph tr	aversin	g algor	unins		Cog	nitive	Demo	Instrate
CO-PO	J Mappi	ng:	1		1		I I I I I I I I I I I I I I I I I I I					<u> </u>
CO	) 1	2	3	4	5	6	7	8	9	10	11	12
CO	1 2	3	2	-	3	3	-	-	-	-	-	-
CO	2 2	3	2	-	3	3	-	-	-	-	-	-
CO	3 2	3	2	-	3	3	-	-	-	-		-
CO	4 2	3	2	-	3	3	-	-	-	-	-	-
Accore	monte .											
Tooch	ments .	mont.										
One co	er Assess	of In S	emecter	· Evalue	ation (I	SE) and	l one En	d Seme	octor Ev	aminat	ion (FS	E)
baying	50% and	d 50%	voights	respect		SE) and				ammai		L)
	sment	u 3070 V	vergnis	respect	lively.	Mar	ke					
ISE	Sillent					25	кэ					
ISE or	a based of	n practi	cal parf	ormed/	Ouiz/ N	Jini Dr	oiect as	cianod/	Dracan	tation/	Group	
Discus	sion/Inte	rnal or	al etc	0111Cu/	Quiz/ 1	v11111-1 1	oject as	signeu	1 ICSCII	tation/	oroup	
ESE: 4		nt is has	ed on c	raleva	minatio	n						
	o Conton	111 15 Uda			minatio	11						
Experi	ment No.	$1 \cdot - D$	rogram	to Ince	rt & Da	lete the	Numbe	r in a 1	D Arra	v	021	Hrs
Aim a	nd Object	11	Insert	& Dele	te the N	Jumber	$\cdot$ in a 1D	A mai		y	021	
Outcor	nes Imp	lement i	nsertio	a Det	etion al	onrithn	n for 1D	) arrav	•			
Theore	tical Rac	koroun	1. Study	a de del	erion al	501 milli V		uray.				
Experi	mentation	n.	. Study	, 01 1110		y •						
Result	and Die	n. Clission	s.									
Conch	ision:	<b>CU351011</b>										

Experiment No. 2: Program on Bubble Sort	02 Hrs.
Aim and Objectives: To implement program on bubble sorting.	
Outcomes: Implement bubble sort algorithm for 1D array.	
Theoretical Background: Study of linear array.	
Experimentation:	
Results and Discussions:	
Conclusion:	
Experiment No. 3: Program to Perform Linear search	02 Hrs.
Aim and Objectives: To implement program for Linear search.	
Outcomes: Implement linear search algorithm for 1D array.	
Theoretical Background: Study of linear array	
Experimentation	
Results and Discussions:	
Conclusion:	
Experiment No 4: Program to Perform Binary search	02 Hrs
Aim and Objectives: To implement program for Binary search	02 1115.
Ann and Objectives. To implement program for Dinary search.	
Theoretical Background: Study of linear array	
Experimentation:	
Experimentation.	
Conclusion	
	02.11
Experiment No. 5: Program to insert the Node in Link List	02 Hrs.
Aim and Objectives: To implement program for Insertion of Node in Link List	
Outcomes: Implement algorithm for Insertion of Node in Link List	
Theoretical Background: Study of link list	
Experimentation:	
Results and Discussions:	
Conclusion:	0.0 11
Experiment No. 6: Program to Delete the Node from Link List	02 Hrs.
Aim and Objectives: To implement program for Deletion of Node from Link List	
Outcomes: Implement algorithm for Deletion of Node from Link List	
Theoretical Background: Study of link list	
Experimentation:	
Results and Discussions:	
Conclusion:	
Experiment No. 7: Program to Perform Operation on Stack.	02 Hrs.
Aim and Objectives: To implement program for push & pop operations on stack.	
Outcomes: Implement algorithm for push & pop operations on stack.	
Theoretical Background: Study of stack.	
Experimentation:	
Results and Discussions:	
Conclusion:	
Experiment No. 8: Program to Perform Operation on Queue	02 Hrs.
Aim and Objectives: To implement program for insertion & deletion in queue.	
Outcomes: Implement algorithm for Insertion & Deletion in queue.	
Theoretical Background: Study of queue.	
Experimentation:	
Results and Discussions:	
Conclusion:	

Experiment No. 0: To Study Traversing expertion of Tree	$02  \mathrm{Hrg}$							
Aim & Objectives, Implement clearithm for deferent Traversing exerctions of	02 HIS.							
Aim & Objectives: Implement algorithm for deferent Traversing operations of								
Outcomes: Understand deferent Traversing operations of Tree								
Theoretical Background: Trees								
Experimentation:								
Results and Discussions:								
Conclusion:								
Experiment No. 10: To Study Traversing operation of Graph	02 Hrs							
Aim & Objectives: Implement algorithm for deferent Traversing operations of								
Graph								
Outcomes: Understand deferent Traversing operations of Graph								
Theoretical Background: Graphs								
Experimentation:								
Results and Discussions:								
Conclusion:								
Textbooks:								
1. Seymour Lipschautz, "Data Structures", Tata McGraw Hill, 2002								
2. ISRD group, Data structures using C, Tata McGraw Hill, 2006								
References:								
1] Y. Langsam, M. Augenstin and A. Tannenbaum, "Data Structures using C and C-	++", Pearson							
Education Asia, 2nd Edition, 2002, ISBN-81-7808-729-4.								
2] Ellis Horowitz, S. Sahni, D. Mehta "Fundamentals of Data Structures in C++", G	algotia Book							
Source, New Delhi 1995 ISBN 16782928	0							
Experiment wise Measurable students Learning Outcomes:								
1. Manipulate 1D array.								
2. Apply bubble sorting algo on 1D array								
3 Perform Linear search algo on 1D array								
4 Perform Binary search algo on 1D array								
5 Insert the Node in Link List								
6 Delete the Node from Link List								
7 Implement stack using linear array								
8 Implement queue using linear array								
9 Using different traversing algo Travers Tree								
10 Using different traversing algo Travers Granh								
10. Osing unterent traversing argo Travers Oraph.								

Title of the Course: Mini Project -I	L	Т	Р	Credit
Course Code: UETC0441	-	-	02	01
Course Pre-Requisite: Analog Circuits, Digital Design, Linear inte	egrated	l circu	its, N	etwork
Analysis.				
			•	

**Course Description:** Course will cover all the implementation of theoretical design & its practical implementation.

**Course Objectives:** 

1. Design working, reliable and electronic system to meet specifications.

2. Inculcate circuit designing skills and ability and to use modern design tools.

3. Enhance employability based on knowledge and understandings of electronic circuit design.

4. To create an interest in the field of electronic design as a prospective career option.

Course Learning Outcomes:													
CO	After the completion of the course the student should								Bloom's Taxonomy				
	be able to								level		Descriptor		
CO1	Apply the fundamental concepts and working principles								Cognitive		Design		
	of electronics devices to design electronics systems.												
CO2	Shall be able to interpret datasheets and thus select								Cognitive		Design		
	appropriate components and devices												
CO3	Select appropriate transducer and signal conditioning									Cognitive		Design	
	circuit to design prototype of Data Acquisition system.												
CO4	Design an electronic system/sub-system and validate its Cognitive Draw											aw	
	performance by simulating the same.												
CO5	Shall be able to use an EDA tool for circuit schematic								Cognitive		Draw		
	and simulation.												
CO-PO Mapping:													
CO	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	-	-	3	-	1	-	-	-	2	-	-	-	
CO2	-	-	3	-	1	-	-	-	2	-	-	-	
CO3	-	-	3	-	1	-	-	-	2	-	-	-	
CO4	-	-	3	-	1	-	-	-	2	-	-	-	
Assessments :													
Teacher Assessment:													
One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE)													
having	50%, an	nd 50%	weight	s respe	ctively.	·							
Assessment							Marks						
ISE	50												

ISE are based on practical performed Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

#### **Guidelines:**

a) Students are expected to Design and simulate all assignments during the semester in a group. Group shall consist of **maximum of three** students. b) Institutions are requested to provide components required for implementation and required software.

c) **For hardware based assignments:** Paper design should be functionally verified with an appropriate EDA tool (NI Multisim/Orcad/Pspice / Altium Designer suite etc.) and prepare the document which consist of :

- 1. Problem statement (Different for each group)
- 2. Specifications 3.Block Diagram
- 4. Component Selection
- 5. Design Calculations
- 6. Simulation results
- 7. Bill of Material
- 8. Conclusion
- 9. Datasheets
- 10. Detailed circuit diagram (separate sheet: Imperial /Half Imperial size)

11. Lauout Making, Etching, component soldering & testing.

#### **Textbooks:**

1. Measurement, Instrumentation, and Sensors Handbookl, John G. Webster, CRC Press, 1999.

2. Printed Circuit Boards: Design, Fabrication, and Assembly||, R. Khandpur, McGraw-Hill ,05

#### **References:**

1. Practical design of power supplies || , Ron Lenk, John Wiley & Sons, 2005

- 2. The Circuit Designer's Companion, Peter Wilson, Elsevier Ltd, 2012
- 3. Printed Circuits Handbook, 7th Edition, Clyde Coombs, Happy Holden, McGraw-Hill ,2016